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Introduction

We present, in this thesis, new results on the variation of Galois representations in p-adic
families of automorphic representations. As an application of our main result, we obtain new
smoothness results for such families. The theme we wish to emphasize is the confluence between
analytic variation and infinitesimal deformations of Galois representations. Both themes have been
exploited to resolve central conjectures in algebraic number theory such as: the Iwasawa main
conjecture (for totally really fields and GL2), Fermat’s Last Theorem and the two-dimensional
Fontaine-Mazur conjecture.

Background and history

In order to do justice the circle of ideas we are exploring, we humbly give a brief, and personal,
recollection of the history and influences of the work contained herein.

p-adic families of modular forms from Serre to Coleman-Mazur. The genesis of modu-
lar forms in p-adic families parameterized by their weight goes back to the work of Serre [58] wherein
the p-adic family of Eisenstein series was explained. Serre’s families arose as formal q-expansions
whose coefficients are p-adic limits of the coefficients of q-expansions associated to classical modu-
lar forms. A geometric construction of p-adic modular forms was given at the same time by Katz
[39]. The arithmetic application, hinted at in Serre’s original article, was that congruences between
modular forms (required to build a p-adic family) can detect, and are explained by, congruences
between special values of L-functions.

This tradition has been expanded upon greatly beginning with the early work of Hida [37]—the
main difference between Hida’s work and his predecessors is that he began focusing on congruences
between (ordinary) eigenforms, rather than all modular forms. By the work of Eichler, Shimura
and Deligne [25, 59, 24], one can associate a p-adic Galois representation ρf : GQ → GL2(Qp)
to each eigenform f of weight k ≥ 2. Here GQ := Gal(Q/Q) is the absolute Galois group of Q.
Thus, Hida’s theory of p-adic families of ordinary eigenforms also gives rise to the construction [38]
of what we now would understand to be a p-adic family of Galois representations. One important
feature of ordinary eigenforms is that although the associated linear representations ρf are often
irreducible, Wiles showed [64] that they become reducible upon restricting to a decomposition
group at p. More specifically, if we denote by ρf,p the restriction to GQp then ρf,p contains a
one-dimensional subrepresentation on which the inertia group acts through a finite quotient. Such
Galois representations are called ordinary. In fact, Mazur and Wiles [50] also explained that the
“big” representations Hida constructed have this property over an entire p-adic family. That is,
when you p-adically interpolate ordinary eigenforms you obtain a p-adic family of ordinary Galois
representations.

In the seminal work [48], Mazur sought to develop an a priori framework in which one could
discuss (infinitesmial) families of Galois representations. A reminder of Mazur’s theory will occur
in Chapter 3. One of the most striking results was the first example of an “R = T” theorem.
Loosely speaking, Mazur defined and studied a certain ring R which parameterized “ordinary
deformations” of the mod p representation ρf : GQ → GLn(Fp). He then showed that all such
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deformations occur in a Hida family containing the given form f . A key ingredient is necessarily the
result of Mazur-Wiles discussed above—this forms the T-side of the picture. The other ingredient
is precise calculations (of a group cohomological nature) inside the deformation ring R. It bears
mentioning that further “R = T” results were also at the heart of the proof of Fermat’s Last
Theorem [65, 62].

The extension of Hida’s theory to non-ordinary cuspforms was an important goal in algebraic
number theory during the final decade of the 20th century. The hint that such a theory existed was
already present in Mazur’s deformation theory and the work of Gouvêa and Mazur [31]. Ultimately,
it was Coleman’s development [22] of the spectral theory of compact operators acting on p-adic
Banach spaces (Gouvêa’s thesis [32] also contains early versions of these ideas) which proved
to be the key technological input. In the fundamental work [20], Coleman and Mazur applied
Coleman’s theory to Katz’s spaces of p-adic modular forms and constructed what we now know
as an eigencurve. If we fix an integer N with (N, p) = 1 then the eigencurve of tame level N is a
rigid analytic curve parameterizing what are known as finite slope overconvergent eigenforms—the
p-adic interpolation of classical eigenforms on Γ1(N) ∩ Γ0(p). Strictly speaking, by eigenform here
we mean an eigenvector for Hecke operators T` with ` - Np and the Atkin-Lehner Up-operator. We
have as well that the eigencurve comes equipped with a family of Galois representations obtained
by interpolating the representations ρf . It is natural to wonder if there is a result analogous to
Mazur-Wiles for arbitrary points of the eigencurve. Notice that if f is an eigenform which is not
ordinary at p then the representation ρf,p is irreducible. Thus, any property of ρf,p we hope to
interpolate over an eigencurve must be hidden deeper within the structure of ρf,p.

Kisin’s lemma and trianguline representations. We now recall Kisin’s analog to Mazur-
Wiles. We fix an integer N with (N, p) = 1 and denote by X the eigencurve of tame level N . Let
f =

∑
an(f)qn be an eigenform of level Γ1(N), weight k ≥ 2 and nebentypus εf . Then, there are

two points xf,α and xf,β on X, one for each root of the polynomial

(0.1) T 2 − ap(f)T + pk−1εf (p) = (T − α)(T − β).

Moreover, we have that T`(xf,α) = T`(xf,β) = a`(f) and Up(xf,r) = r for r = α, β. The interpolation
of the Galois representations on X is specified at these points by setting ρxf,α := ρf =: ρxf,β . Next,
by work of Saito [56] one has that D+

cris(ρxf,r)
ϕ=r 6= 0 for either root r = α, β. Here, Dcris is

Fontaine’s crystalline functor in p-adic Hodge theory and the +-superscript refers to the non-
negative part of the Hodge filtration.

Kisin’s major coup [43] was that the same is true at any point on the eigencurve: if ρx is the
Galois representation at a point x on the eigencurve then

(0.2) D+
cris(ρx,p)

ϕ=Up(x) 6= 0.

This vastly generalizes the result of Mazur-Wiles (that result is obtained by considering the unit
root of an ordinary eigenform). As an application, Kisin was also able to deduce that the “geo-
metric condition” of the Fontaine-Mazur conjecture [30] is enough to distinguish (most) classical
eigenforms from non-classical ones on the eigencurve. He further showed that a certain universal
deformation ring of Galois representations is the same as the (completed) local ring on the eigen-
curve. The missing cases1 alluded to occur at classical points xf,β where f is ordinary, vp(β) = k−1

and f =
(
q ddq

)k−1
g for some overconvergent eigenform g of weight 2− k.

In order to study the higher-dimensional families of Galois representations we will make use of
Colmez’s fundamental notion of trianguline representations [23]. To explain this, we recall that

1The deformation-theoretic situation at these points have since been explained by Belläıche [3] (see the precursor
[4] as well).
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attached to any p-adic Galois representation ρp of GQp one can associate a (ϕ,Γ)-module Drig(ρp)
over the Robba ring (these terms will be explained in Chapter 2). For now, it suffices to say that a
(ϕ,Γ)-module is a finite free module over a certain commutative ring with semi-linear actions of an
operator ϕ and a group Γ. Some, but not all, (ϕ,Γ)-modules are of the form Drig(ρp). Nevertheless,
many of the tools we use to study Galois representations (p-adic Hodge theory, Galois cohomology,
etc.) extend to the category of (ϕ,Γ)-modules.

We say that a (ϕ,Γ)-module is trianguline if it is upper triangular with respect to the operator
ϕ and the group of operators Γ. A representation ρp is a trianguline representation if Drig(ρp)
trianguline; the choice of a filtration making it upper triangular is called a triangulation. Note,
any crystalline representation is trianguline (in many different ways). In these terms, Kisin’s result
(0.2) is rephrased by saying that the representations on the eigencurve are all trianguline. That is,
for each x on the eigencurve X there is a rank one (ϕ,Γ)-module Lx ⊂ Drig(ρx,p). Moreover then,
his deformation-theoretic result says that Lx varies analytically with x away from a discrete set.
Specifically, we mean away from points xf,β where f is ordinary of weight k, vp(β) = k − 1 and
f = (q ddq )k−1g for an overconvergent eigenform g of weight 2− k. Such points are known as critical
points and their higher-dimensional analogues are the main objects of this thesis.

Statement of results and methods

The higher-dimensional analogs of the eigencurve are known as eigenvarieties—they are ob-
tained as spaces of p-adic automorphic forms for a connected reductive group G. The applications
in Chapter 5 will occur in the case of definite unitary groups attached to an imaginary quadratic
extension E/Q such that such that G(Qp) ∼= GLn(Qp). In particular, we assume that p splits in
E. Let us fix such a group (and quadratic extension) for concreteness.

Historically, there are multiple creators of eigenvarieties in this context. For example, Chenevier
[15] and Loeffler [47] have each provided a construction using Buzzard’s eigenvariety machine
[12]. On the other hand, a different, more general, construction is given by Emerton [26] using
completed cohomology. The common theme is that one considers a fixed class of regular, algebraic
automorphic representations for G and their systems of eigenvalues for an associated Hecke algebra.
An eigenvariety is then obtained by p-adically interpolating the eigenvalues at these “classical
points”. The resulting rigid analytic space (which should be equidimensional of dimension n) is
independent of its creator and we refer to any of them as an eigenvariety. We will intentionally stay
vague for the rest of the introduction as to what class of representations one considers—it suffices
for now to say that we will consider representations π such that πp is an unramified representation
of GLn(Qp).

Eigenvarieties also come equipped with a natural family of Galois representations. Indeed,
by the work of many people we now know how to attach a Galois representation ρπ : GE,S →
GLn(Qp) to any algebraic automorphic representation π for G. Here, S is a finite set of places of
E depending only on G and the class of representations we are interpolating. The interpolation
of these representations over the eigenvariety provide us with a rich example of a p-adic family of
Galois representations. The questions which this thesis seeks to answer are:
(Q1) What is the analog of the results of Mazur-Wiles and Kisin?
(Q2) Are the local rings on eigenvarieties also naturally deformation rings for Galois representa-

tions?

Previous work. The answers to the questions (Q1) and (Q2) have been given by Belläıche-
Chenevier [5] in a generic situation on eigenvarieties. The representations ρπ are crystalline at
p (because πp is unramified) and thus have a triangulation. Moreover, the classical points on
eigenvarieties actually correspond to pairs (π, P ) where π is an automorphic representation for G
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and P is a triangulation of ρπ,p—this is the analog of choosing a root of (0.1) in the case of modular
forms. Thus, though we expect ρπ,p has many triangulations, there is a canonical triangulation at
each corresponding point on an eigenvariety.

Fix a point (π, P ) and consider the representation ρπ,p. By definition, P defines a filtration

(0.3) 0 ( P1 ( · · · ( Pn−1 ( Pn = Drig(ρπ,p)

where each Pi is a (ϕ,Γ)-submodule of rank i and the quotients are all (ϕ,Γ)-modules as well. We
attach to this triangulation an ordered list of integers (s1, . . . , sn) by specifying that the Hodge-
Tate weights of Pi be {s1, . . . , si}. Then, we say that P is a non-critical triangulation of ρπ,p if the
sequence (s1, . . . , sn) of weights is strictly increasing. This is a Zariski open and dense condition
within the space of all classical points (π, P ) on an eigenvariety. The answers given by Belläıche-
Chenevier over the non-critical locus are:

(Q1) The triangulations (0.3) extend to formal neighborhoods around non-critical points.
(Q2) Under some techincal hypothesis, the local rings on “minimal eigenvarieties” parameterize

deformations of the global representations ρπ which are:
• conjugate self-dual (an Archimedean condition),
• unramified away from p (in the sense of Bloch-Kato), and
• trianguline at p.

Here, an infinitesimal deformation of ρp is called trianguline if it has a triangulation deforming the
given one (0.3). We will discuss what we mean by “minimal” below, following Theorem B. We will
give, as well, some remarks on their work when we compare and contrast our methods below.

The results of this thesis. For simple reasons (e.g. coming from Sen’s theory in p-adic
families) one knows that neither answer given by Belläıche-Chenevier can be correct at critical
points. Instead, we have to relax our expectations about which pieces of the triangulation we
expect to analytically continue in formal neighborhoods of points. Assume that ρπ,p has Hodge-
Tate weights k1 < · · · < kn. Let us call a step Pi in (0.3) non-critical if we have {s1, . . . , si} =
{k1, . . . , ki}. We then can consider the filtration

(0.4) 0 ( Pi1 ( · · · ( Pis−1 ( Pis = Drig(ρπ,p)

where Pij appears if and only if Pij is non-critical. Following Chenevier’s terminology in [16], we
call such a filtration a parabolization. The main techincal result of this thesis, and our answer to
(Q1), is the following theorem. The theorem can be found in the text as Theorem 4.13—there are
more precise hypotheses listed there as well.

Theorem A. Suppose that (π, P ) is a classical point on an eigenvariety and ρπ is irreducible.
Then, the parabolization (0.4) analytically continues in an affinoid neighborhood of the point (π, P ).

Notice that our result is valid over entire affinoid neighborhoods rather than just finite thick-
enings. Thus, even at non-critical points (where (0.4) is the same as (0.3)) we have strengthened
the results of Belläıche-Chenevier and Kisin, at least in the case that the global representation ρπ
be irreducible.

Our answer to the question (Q2) requires slightly more explanation than (Q1). We denote by
ρ̃ an infinitesmial deformation of ρπ,p. We say that ρ̃ is a paraboline deformation with respect to a
parabolization (0.4) if there is a parabolization of Drig(ρ̃) deforming the given one. One should note
that this is not necessarily even a condition on ρ̃. Indeed, it can happen that the ordering (s1, . . . , sn)
of the weights associated to the triangulation (0.3) is given by by s1 = kn, s2 = kn−1, . . . , sn = k1. In
that case the parabolization (0.4) is just the trivial parabolization and thus, to ask for a paraboline
deformation is the same as to ask for a deformation.
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We remedy the possible lack of content by passing further into the theory of (ϕ,Γ)-modules.
Suppose that D is any crystalline (ϕ,Γ)-module and we fix a triangulation

(0.5) 0 ( P1 ( P2 ( · · · ( Pt = D

of D. Since being crystalline is stable under subquotient, each Pi is crystalline. We denote by
(s1, . . . , st) the ordering of the Hodge-Tate weights of D determined by the triangulation (0.5) and
by φi the crystalline eigenvalue of the rank one crystalline (ϕ,Γ)-module Pi/Pi−1. For reasons made
clear in the text, we make a re-normalization and denote Fi = p−siφi. It is easy to see that for
each i = 1, . . . , t one has that

D+
cris(∧

iD(s1 + . . .+ si))ϕ=F1···Fi 6= (0).

Now we consider a deformation D̃ of D. For each i = 1, . . . , t we denote by s̃i the Hodge-Tate-Sen
weight of D̃ which deforms si. We then say that D̃ is a Kisin-type deformation with respect to
(0.5) provided for each i = 1, . . . , t the module D+

cris(∧iD̃(s̃1 + · · ·+ s̃i))ϕ= eF1··· eFi is free of rank one
for some choice of elements F̃i deforming the Fi.

Return now to the linear representation ρπ,p. We consider all deformations ρ̃ of ρπ,p such that
the following hold.

• The deformation ρ̃ is paraboline with respect to the parabolization (0.4). We denote by

0 ( P̃1 ( P̃2 ( . . . ( P̃s = Drig(ρ̃)

the deformation of the parabolization.
• Each of the (ϕ,Γ)-modules P̃j/P̃j−1 is a Kisin-type deformation of Pij/Pij−1 with respect

to the induced triangulation coming from (0.3).
Such a deformation ρ̃ we coin as a Kisin-type paraboline deformation. It is not too hard to see that
paraboline deformations of Kisin-type form a relatively representable subfunctor of all deformations
of ρπ,p. The Kisin-type paraboline deformation conditions leads to our answer of (Q2).

Recall that we have fixed π and a corresponding point (π, P ) on an eigenvariety. We have as
well the linear representation ρπ. Assume that ρπ is irreducible—this guarantees a satisfactory
deformation theory. We denote by Rρπ ,P the universal deformation ring of ρπ parameterizing
deformations ρ̃ which are

• conjugate self-dual (again, an Archimedean condition)
• unramified away from p (in the sense of Bloch-Kato), and
• ρ̃p := ρ̃

∣∣
GQp

is a Kisin-type paraobline deformation of ρπ,p.

The ring Rρπ ,P is a complete local noetherian ring and we denote by tRρπ,P its Zariski tangent
space. We denote as well the completion of the rigid local ring at the point (π, P ) by Ôrig

(π,P ) and
t(π,P ) the Zariski tangent space at (π, P ).

Theorem B. Assume that the eigenvariety is “minimal” for π. Then, one has a natural
surjection

(0.6) Rρπ ,P � Ô
rig
(π,P )

and an inequality n ≤ t(π,P ) ≤ tRρπ,P .

The term minimal here refers to issues away from p but inside the set of places where ρπ could
ramify. In the case of the eigencurve, if f is a newform at level N then the tame level N eigencurve
would be minimal for f . The inequalities at the end of Theorem B are formal from (0.6). The case
where we can show that each inequality is an equality is the following and gives a complete answer
to (Q2).
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Theorem C. Assume that ρπ is irreducible and that (π, P ) denotes a point on a minimal
eigenvariety for π. Assume, as well, that

• H1
f (GE,S , ad ρπ) = (0), and

• the Kisin-type deformation problems on the associated gradeds of the parabolization (0.4)
satisfy a hypothesis (3.15).

Then, the map (0.6) is an isomorphism and Ôrig
(π,P ) is a regular local ring of dimension n.

Let us remark quickly on the two hypotheses. First, H1
f is the “fine” Bloch-Kato Selmer group

defined in [10]. This particular vanishing is a techincal hypothesis which can be shown in many
cases. Moreover, it is conjectured to always to be true. The second hypothesis, on the other hand,
should be treated (at this point of our knowledge) as being due to limitations in our ability to
compute Kisin-type deformation rings with respect to fully critical triangulations. For example, it
is shown in §3.3 that the second hypothesis is satisfied if each graded in (0.4) has rank at most
two. In particular, this gives completely new results at many critical points. It includes, as well,
the answer to (Q2) at non-critical points given in [5].

Methods. The main place where we have developed new methods is in the proof of Theorem
A, but let us first explain how to deduce the final two results given Theorem A.

In order to deduce Theorem B from Theorem A we follow closely the ideas of Mazur and
Kisin (in the case of modular forms) and Belläıche-Chenevier in general. The hypothesis that ρπ
be irreducible first guarantees the existence of the deformation ring Rρπ ,P . Furthermore, it also
implies that one has a deformation ρ̂π : GE,S → GLn(Ôrig

(π,P )) of the representation ρπ (this is a
result of Rouquier and Nyssen). Thus, to show that we have a map (0.6) we need to show that
ρ̂π has the three properties which define Rρπ ,P . It is not hard to see that ρ̂π must be conjugate
self-dual because it is true at every classical point. The deformation conditions away from p are
valid for ρ̂π as we work on a minimal eigenvariety for π and because of recent advances in local-
global compatibility for the representation ρπ. Finally, ρ̂π,p is a Kisin-type paraboline deformation
because of Theorem A. Thus we earn a map (0.6) and the construction of the eigenvariety implies
easily that the map is surjective. We have already remarked that the inequalities are formal.

Now, once we have Theorem B in hand we see that in order to deduce the result of Theorem
C we must show that dim tRρπ,P ≤ n. The hypothesis on H1

f and the deformation conditions away
from p imply that there is an inclusion

(0.7) tRρπ,P ↪→ tRρπ,p,P /H
1
f (GQp , ad ρπ,p).

Here, tRρπ,p,P is the Zariski tangent space for the deformations of ρπ,p which are Kisin-type parabo-
line deformations. This insight is really due to Belläıche-Chenevier. The goal now is to make a
Galois cohomology calculation and show that the quotient on the right hand side is at most n-
dimensional. The paraboline part of the calculation is easy and conceptual. The Kisin-type part,
while not hard, is “by hand”. The second hypothesis in Theorem C reflects all the cases where we
have carried out this computation. Notice that in the non-critical case, there are no “by hand”
calculations.

It remains to explain how we deduce Theorem A. Here the story diverges quite a bit from
previous work. The first step is to construct a (ϕ,Γ)-module D over an affinoid neighobrhood
near a point (π, P ). For this, we first use that ρπ is irreducible to extend the representation to an
affinoid neighborhood and then we take the associated (ϕ,Γ)-module (constructed in this generality
by Kedlaya and Liu).

In order to construct parabolizations of D we must first understand possible candidates for
the terms of the parabolization over the family—among the terms of (0.5), only the entire module
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a priori extends to an affinoid neighborhood. The second issue is the actual construction of the
parabolizations. Both issues are almost taken care of by the construction of the eigenvariety. Indeed,
the construction tells us exactly what the associated gradeds of an affinoid-local triangulation
should be in the case of a non-critical point. Thus, we could try to construct a triangulation over
the entire base by repeatedly attempting to construct rank one submodules of quotients of D.
In carrying out the process, we make use of recent results of Kedlaya, Pottharst and Xiao [41]
on the Galois cohomology of (ϕ,Γ)-modules over affinoid bases. Using their results, we erect a
standard cohomology and base change archetype from which we can deduce the existence of maps
between (ϕ,Γ)-modules over affinoid bases from pointwise information on a Zariski dense set. The
pointwise information is given, in turn, by studying the Galois cohomology of (ϕ,Γ)-modules over
a field [23, 46].

This method works perfectly at a non-critical point. There, we inductively construct rank one
submodules of quotients of D. At each step, the quotient we construct remains projective and
we happily continue on with the induction. However, it is seen to break down at a critical point.
Indeed, even after the first step, one notices that the quotients being constructed need not be
projective anymore and thus we have left the world of (ϕ,Γ)-modules. Nevertheless, we carry on
the process working instead with generalized (ϕ,Γ)-modules over affinoid bases. Since the main
result of Kedlaya-Pottharst-Xiao extends to this larger class of objects and we can still use it to
construct filtrations inside these new modules. The rest of the game is then to determine when
the generalized (ϕ,Γ)-modules one obtains are bona fide (ϕ,Γ)-modules. We show that it happens
exactly at the non-critical steps in the process. Just as in the non-critical case, Galois cohomology
plays a key role here.

Organization

This thesis is arranged in five chapters. The proofs of the three theorems mentioned can be
found in Chapters 4 and 5.

The first chapter describes input needed from rigid geometry. This includes the construction of
the Robba ring over an affinoid base and the definition of (generalized) (ϕ,Γ)-modules. We have
been greatly inspired in this regard by [41, Chapter 2].

The second chapter covers the arithmetic theory of (ϕ,Γ)-modules. Our first task is to remind
the reader of the dictionary between Galois representations and (ϕ,Γ)-modules. We include here
the extension of p-adic Hodge theory from Galois representations to (ϕ,Γ)-modules. A significant
amount of time is devoted to the main theorems on the Galois cohomology of (ϕ,Γ)-modules over
a field given by [23, 46]. Finally, we develop the formalism of parabolizations of (ϕ,Γ)-modules
following Chenevier [16, §3].

The third chapter represents our attempt to expose the deformation theory of (ϕ,Γ)-modules.
The results here are formally similar to those of linear representations and so we move quickly in
some places. We do pause and compute the Zariski tangent spaces of many deformation functors.
These include the Bloch-Kato Selmer groups and paraboline deformation functors to be sure. We
also give precise meaning to the deformation problems at p discussed in this introduction. The
chapter ends with some calculations of Kisin-type deformation rings in the fully critical case, which
we recall is the bottleneck in the applicability of Theorem C.

The fourth chapter is the technical heart of this work. It includes the extension mentioned in
the previous section of [41] to generalized (ϕ,Γ)-modules as well as the proof of Theorem A. Here
we work within the the framework of “refined families of (ϕ,Γ)-modules”. There is some time spent,
though not a lot, explaining their basic properties and what one can deduce from the definitions.
Moving on, we prove Theorem A in three different levels of generality—the non-critical case, the
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“minimally critical case” and the general case. We hope that the reader daunted by the explosion
of indices in the final proof will find peace in the first two.

This brings us to the final chapter. We first orient ourselves with an exposition of eigenvarieties.
We do not include the construction but we do provide a leisurely explanation of the interaction
between automorphic data and Galois representations. Here, as well, we go to great lengths to make
sure we have the most up-to-date references on the construction of Galois representations attached
to automorphic representations for definite unitary groups. With the definition and properties
of eigenvarieties finished, we move on to stating and proving the two theorems Theorem B and
Theorem C. Most of this time is spent explaining how the results of Chapter 4 can be applied to
the eigenvariety formalism we develop, i.e. why eigenvarieties define refined families.

Notations and conventions

Throughout, we consider primes ` and p (possibly the same). We choose now and forever
isomorphisms ιp : Q→ Qp and ι∞ : Q→ C.

The adeles. We use v to denote (possibly infinite) places of a number field. The adeles (over
Q) are the restricted direct product

A =
∏
v

′Qv

with respect to the open subgroups Z` ⊂ Q` at finite primes `. We denote by

Af =
∏
v-∞

′Qv.

the finite adeles

`-adic fields. By an `-adic field we will always mean a finite extension of the field Q` of `-
adic numbers. If E is a `-adic field then we will always normalize the `-adic valuation so that
|−|` : E → Q has |`|` = 1.

Galois groups. If E is a field and Esep is the choice of a separable closure for E then we let
GE := Gal(Esep/E). This is a profinite group, an open system of neighborhoods of the identity
being given by {GE′} where E′/E is a finite extension.

In the case that E/Q` is an `-adic field, we have a short exact sequence

1→ IE → GE → Gk → 1

where k is the residue field of E and IE is the inertia subgroup of GE . Since k is a finite field, we
have that Gk ∼= Ẑ, topologically generated by the automorphism σ(x) = x#k. The Weil group of
E is the subgroup WE of GE mapping to the integer powers of σ, i.e. WE fits into the diagram

1 // IE // WE

��

‖−‖
// σZ

��

// 1

1 // IE // GE // Gk // 1

The top short exact sequence defines a topology on WE (different than the induced topology from
GE). We use Frob ∈WE to denote lifts of the geometric Frobenius σ−1.
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Galois representations. Suppose that E is a field and L a topological field. Then, a Galois
representation of GE over L is a continuous homomorphism ρ : GE → GLn(L). The special cases
we will use are E is either a number field or an `-adic field and L a p-adic field (possibly with
` = p).

Suppose that E is any one of these fields. Choose a compatible system {ζpn}n of primitive

roots of unity in E. Then GE acts on each root of unity by g(ζpn) = ζ
χn,cycl(g)
pn for some χn,cycl(g) ∈

(Z/pnZ)×. Taking n→∞ we obtain the p-adic cyclotomic character

χcycl : GE → Z×p .

If ρ is a p-adic representation then we use the notation ρ(n) to denote the representation ρ⊗Qpχ
n
cycl.

p-adic Hodge theory. In the case that E and L are both p-adic fields use the standard
functors of p-adic Hodge theory DSen, DdR, etc. giving rise to representations which are Hodge-
Tate, de Rham, etc. We adopt the convention that χcycl has Hodge-Tate weight -1.

Weil-Deligne representations. Let E be an `-adic field. An n-dimensional Weil-Deligne
representation is a pair (r,N) where

• r : WE → GLn(C) is a continuous n-dimensional representation,
• N ∈MN (C) is a nilpotent matrix, and
• for all g ∈WE , r(g)−1Nr(g) = #k‖g‖N .

Suppose now that L is a p-adic field and E is an `-adic field for ` 6= p. If ρ : GE → GLn(L) is
a continuous representation we use WD(ρ) to denote its associated Weil-Deligne representation.

Keep L as above but suppose that E is a p-adic field now. If ρ is de Rham then one can still
attach a Weil-Deligne representation WD(ρ). In the case that E is crystalline WD(ρ) = Dcris(ρ)
with Frob ∈WL acting through the crystalline Frobenius ϕ.

Local class field theory. Suppose that E is an `-adic field. Then, the local Artin map

ArtE : E×
∼=−→W ab

E

is normalized so that a uniformizing parameter goes to a geoemtric Frobenius elements. In the case
that E = Q` we use the notation Art`.

The local Langlands correspondence. Suppose that E is an `-adic field. The local Lang-
lands correspondence defines a bijection{

smooth representations
of GLn(E)

}
recF−→

{
Weil-Deligne representations

(r,N) of WE

}
.

It is normalized so that if χ is a smooth character E× → C× and π is any smooth representation
of GLn(E) then

recE(π ⊗ χ(det)) = recE(π)⊗ (χ ◦Art−1
E )
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CHAPTER 1

Affinoid algebras, the Robba ring and (ϕ, Γ)-modules

In this brief first chapter we recall the theory and conventions we will need from Tate’s rigid
geometry. Second, we remind the reader of the Robba ring over the field Qp. Third, we explain
what we will mean by the Robba ring over a Qp-affinoid algebra—the key for studying (ϕ,Γ)-
modules in families (see [40, 41]). We will spend some time recalling and developing the main
objects we are going to study: finitely presented modules over the Robba ring with coefficients in
an affinoid algebra. In the final section we elaborate on the construction of (ϕ,Γ)-modules in this
setting. We end by revealing the connection between (ϕ,Γ)-modules and Galois representations.

1.1. Affinoid algebras (over Qp)

The standard theory of affinoid algebras is explained in [11]. We will (unless we change our
mind, in which case we hopefully will remind the reader) use A to denote an affinoid Qp-algebra.
That is, A is a quotient of a standard Tate algebra

Qp〈T1, . . . , Tr〉 =

{∑
I

aIT
I ∈ Qp[[T1, . . . , Tr]] : |aI | → 0 as I →∞

}
.

The usual Gauss norm passes to the quotient (any ideal of a Tate algebra is closed with respect to
the Gauss norm) and gives A a norm as well. Associated to any such A, we have the rigid space
X := Sp(A) whose points are in bijection with the closed points of SpecA (i.e. the maximal ideals
of A). We denote by Br the rigid space Sp(Qp〈T1, . . . , Tr〉) which is our model of the closed disc
of radius one. We should not have to deal deeply with the affinoid topology, which of course is not
the same as the Zariski topology. If x is a point of X corresponding to the maximal ideal mx, we
use the notation Orig

X,x to denote the local ring of the space X at the point x. We will also write

OX,x to denote the algebraic localization Amx . Each are local rings, the ring Orig
X,x is Henselian and

their completions at their maximal ideals are naturally isomorphic.
If x ∈ X corresponds to a maximal ideal mx ⊂ A then we will denote the residue field at x by

L(x) := A/mx. By our previous comments this is the same as the residue field of Orig
X,x, which is

also the same as the residue field of Âmx . If f ∈ A then we can take its value in the residue field
f(x) := f mod mx without reference to which topology we consider.

Most of our work is going to concern modules over affinoid algebras but with reference to their
properties in the Zariski topology. In particular, we will be mostly interested in the ranks of finite
A-modules. If M is a module over A and x corresponds to a point of X then we denote

Mx := M ⊗A L(x) =
(
M ⊗A Orig

X,x

)
⊗Orig

X,x
L(x) = (M ⊗A OX,x)⊗OX,x L(x).

The notation extends to sheaves over a general rigid space. The following result allows us to deduce
statements about A-modules by only considering the points of X.

Proposition 1.1 ([11, Proposition 6.1.1/3]). If A is an affinoid algebra then it is a Jacobson
ring. In particular, the subset Sp(A) ⊂ Spec(A) is Zariski dense.
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We now give results in the theory of coherent sheaves over rigid spaces (as explained in [11,
§9.4]) that need proving since we cannot find a reference for them. Recall that if A is an affinoid
algebra then to any A-module M there is a canonically associated sheaf M̃ . Moreover, Kiehl’s
theorem [11, Theorem 9.4.3/3] says that the functor M 7→ M̃ defines an equivalence between finite
A-modules and coherent sheaves on Sp(A).

Lemma 1.2. Suppose that X = SpA and Y = SpB are affinoid algebras over Qp. Then, the
projection X ×Qp Y → X is surjective and closed (in either the Zariski or the rigid topology).

Proof. Recall that X×Qp Y = Sp(A⊗̂QpB). The fact that the map is surjective is clear, being
the base change of a surjective map Y → Sp(Qp). To see that it is closed, choose r and s so that
we have a diagram

X ×Qp Y

��

// Br+s

��

X // Br

whose horizontal arrows are closed immersions (see [11, 7.1.3] for a discussion). The closedness of
the left vertical arrow then follows from the closedness of the right vertical arrow. �

Recall that if X is a topological space and f : X → N is a function then f is upper semi-
continuous if for all n, the set

{x ∈ X : f(x) ≥ n}
is closed. In particular, if f is upper semi-continuous then its minimum is achieved on an open
subset of X.

Proposition 1.3. Let X = Sp(A) as above.
(a) If Q is a coherent sheaf on X then x 7→ dimL(x)Qx is upper semi-continuous in the Zariski

(and thus affinoid) topology.
(b) Now suppose that Y is another rigid space over Qp. Let Q be a coherent sheaf on X×Qp Y

and assume that for all x ∈ X, Qx is free over Yx := L(x) ×Qp Y . Then, the function
x 7→ rankYx Qx is upper semi-continuous on X in the Zariski (and thus affinoid) topology.

Proof. By Kiehl’s theorem, Q = Q̃ for some finite A-module Q and rankL(x)Qx = rankL(x)Qx.
Since A is noetherian, Nakayama’s lemma implies that x 7→ dimL(x)Qx is upper semi-continuous
on Spec(A). This proves (a). In the case of (b) we can assume without loss of generality that
Y = Sp(B) is affinoid. Indeed, if Y ′ ⊂ Y is open then since Qx is free for each x we have
rankY ′x Qx = rankYx Qx. In this case Q is again associated to a finite A⊗̂QpB-module Q. Then, to
prove (b) it is enough to show that if z ∈ X ×Qp Y is a point lying over x then

(1.1) dimL(z)Qz = rankL(x)⊗QpB
Qx.

Indeed, if πX is the projection X ×Qp Y → X then under (1.1) (and using the surjective part of
Lemma 1.2) we have{

x ∈ X : rankL(x)⊗QpB
Qx ≥ n

}
= πX

({
z ∈ X ×Qp Y : dimL(z)Qz ≥ n

})
.

Since πX is closed (by Lemma 1.2), the right hand side is closed by part (a). Thus, the left hand
side is also closed.

So, it just remains to explain (1.1). Let x and z be given with πX(z) = x and consider the
maps

{z}red → {x}red ×Qp Y
ix×id−→ X ×Qp Y
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whose composition we denote by jz. By assumption we have that (ix× id)∗Q is free of rank equal to
rankL(x)⊗QpB

Qx. Thus, j∗zQ is a vector space over L(z) with this dimenison. On the other hand,
j∗zQ has dimension dimL(z)Qz as well. �

Corollary 1.4. Suppose now that X = Sp(A) is reduced and that Y is another rigid space.
Assume that Q is a coherent sheaf over X ×Qp Y such that for all x ∈ X the fiber Qx is free
over Yx := L(x) ×Qp Y . Then, there exists an open affinoid U ⊂ X such that Q

∣∣
U×QpY

is finite
projective. If rankYx Qx is independent of x ∈ X we can take U = X.

Proof. By Proposition 1.3(b) we can shrink X and assume that x 7→ rankYx Qx is constant on
X ×Qp Y . Furthermore, we can assume that Y is an affinoid Y = Sp(B). The result then follows
from [41, Lemma 2.1.10(2)]—this is where we use that A is reduced. If x 7→ rankYx Qx is constant
then we never had to change X. �

1.2. The Robba ring

We are now going to give the main examples of rigid spaces we will consider. They will be
products of an affinoid base X = Sp(A) together with certain subdomains of the open p-adic unit
disc. In the case where the affinoid base is a finite extension of Qp, we recall that such spaces
behave essentially as though they are principal ideal domains (see Proposition 1.7).

1.2.1. The case of a p-adic field. Fix for this subsection a finite extension L/Qp. We
normalize the p-adic valuation on L so that |p| = 1/p.

We fix rational numbers 0 < s ≤ r. The first space we define is the p-adic annulus

A1[s, r] =
{
T : p−r/(p−1) ≤ |T | ≤ p−s/(p−1)

}
.

Its associated affinoid algebra, which we denote by R[s,r] (the letter R stands for “Robba”), is
isomorphic to the Laurent domain (at least if r <∞)

Qp〈T,X, Y 〉/(X − Tps/(p−1), Y Tpr/(p−1) − 1).

If we take r =∞ then we get a p-adic disc

A1[s,∞] =
{
T : |T | ≤ p−s/(p−1)

}
.

The associated affinoid algebra is denoted by R[s,∞] and it is isomorphic to a Weierstrass domain

Qp〈T,X〉/(X − Tps/(p−1)).

Here is a picture of the disc so that we can can keep track of the way the radii are changing.
Fix r and notice that if 0 < s < s′ ≤ r then the restriction map defines an inclusion R[s,r] ⊂

R[s′,r] which is flat and has dense image (see [41, Remark 2.1.4]). We then define

Rr =
⋂

0<s≤r
R[s,r].

This is the ring of functions converging on a half open annulus

A1(0, r] =
{
T : p−r/(p−1) ≤ |T | < 1

}
.

inside the disc. This is no longer an affinoid because, for example, the function T on A1(0, r] would
violate the maximum modulus principle [11, Proposition 6.2.1/4]. However, it is a rigid analytic
space in the sense of Tate, admissibly covered by admissible open subsets

{
A1[s, r]

}
with 0 < s ≤ r.

Definition. The Robba ring R is the ring R =
⋃

0<r<∞Rr.
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Figure 1. A picture of the disc

Suppose that L is a p-adic field. We extend the definition to L-coefficients by the formula
R?
L = R? ⊗Qp L where ? is either of the decorations r or [s, r]. It would be the same to begin with

spaces A1[s, r]/L with ring of functions of L〈T,X, Y 〉/(X−Tps/(p−1), Y Tpr/(p−1)−1). In particular
we still have

RrL =
⋂

0<s≤r
R[s,r]
L and RL =

⋃
0<r<∞

RrL.

Now, every element f ∈ RL is given by a formal Laurent series

f(T ) =
∑
n∈Z

anT
n, an ∈ L

so that the sum converges on some annulus, depending on f .

1.2.2. The case of a general affinoid base. We extend the Robba ring to the situation of
an affinoid base. Throughout this section we will denote by A an affinoid Qp-algebra (recall §1.1)
and X = Sp(A). Let 0 < s ≤ r be rational numbers again. Then, define spaces

X [s,r] = X ×Qp A1[s, r]

Xr = X ×Qp A1(0, r]

with rings of functions R[s,r]
X = A⊗̂QpR[s,r] and RrX = A⊗̂QpRr. Notice that X [s,r] is an affinoid

space, i.e. R[s,r]
X is an affinoid Qp-algebra. In particular, it is noetherian. Note that we have as

well that
RrX =

⋂
0<s≤r

R[s,r]
X .

Definition. The Robba ring over X (or, over A) is RX =
⋃

0<r<∞RrX .

Example 1.5. In the case that A is a finite Qp-algebra. Then, we will often switch to the
notationR?

A := R?
Sp(A) where ? ∈ {∅, [s, r], r}. Notice that in this case, since A is finite-dimensional
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over Qp, we have
R?
A = A⊗Qp R?.

For example, this notation agrees with the previous notation for RL where L/Qp is a p-adic field.

Example 1.6. If A is a local Artin Qp-algebra then A/mA is a p-adic field and one sees that
RA is a successive extension of RA/mA by itself.

1.2.3. Modules over the Robba ring. We now review and create some basic results in the
theory of modules over the Robba ring. What we are going to explain can be found in [41, §2]
except in the next section we have to extend one small proof; thus, we feel it necessary to review
definitions and details for a short time. We first consider modules over the Robba ring RL.

Since R[s,r]
L is the ring of analytic functions on an affinoid subdomain of the unit disc, it is a

noetherian integral domain. It follows that RrL and RL are also an integral domains. The finiteness
properties of RL were first studied by Lazard [45]; he proved that any finitely generated ideal of
RL is principal. The following strengthening of Lazard’s work is indispensable for us.

Proposition 1.7 ([8, Proposition 4.12]). The Robba ring RL over L is an adequate Bezout
domain. That means:

(a) For a finite module M over RL to be free, it is necessary and sufficient that it be torsion
free.

(b) Any finitely generated submodule M of RnL has elementary divisors: there is a basis
e1, . . . , en for RnL and elements f1 | · · · | fu of RL such that f1e1, . . . , fueu is a basis
for M (it is free by the previous part). Moreover, the ideals (f1) ⊃ (f2) ⊃ · · · ⊃ (fu) are
unique.

Fix now a rational number r0 > 0. In general, we notice that
{
A1[s, r]

}
0<s≤r≤r0 is an admissible

covering of A1(0, r0] by admissible affinoid open sets. More generally Xr0 is admissibly covered
by
{
X [s,r]

}
. Each X [s,r] is affinoid because X is affinoid. In particular, we have an equivalence of

categories [11, 9.4.3/2]{
finite R[s,r]

X -modules
}
↔
{

coherent sheaves on X [s,r]
}
.

Thus, to give a coherent sheaf Q on Xr0 is the same as to give:

(a) The data of a finite R[s,r]
X -module Q[s,r] for all 0 < s ≤ r ≤ r0.

(b) For all choices of intervals [s′, r′] ⊂ [s, r] ⊂ (0, r0] we need isomorphisms

res[s,r]
[s′,r′] : Q[s,r] ⊗R[s,r]

X

R[s′,r′]
X

∼=−→ Q[s′,r′],

such that
(c) if we have three intervals [s′′, r′′] ⊂ [s′, r′] ⊂ [s, r] ⊂ (0, r0] then we have compatibility

Q[s′′,r′′] Q[s′,r′] ⊗
R[s′,r′]
X

R[s′′,r′′]
X

res
[s′,r′]
[s,r]

oo

Q[s,r] ⊗R[s,r]
X

R[s′′,r′′]
X

res
[s′,r′]
[s′′,r′′]

OO

(id⊗1)⊗id
//

(
Q[s,r] ⊗R[s,r]

X

R[s′,r′]
X

)
⊗
R[s′,r′]
X

R[s′′,r′′]
X

res
[s,r]

[s′,r′]⊗ id

OO

We will use the notation Q = (Q[s,r]) to pass between the sheaf on Xr0 and the modules over each
member X [s,r] of the cover.
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Notice that the data of (b) gives us that if 0 < s ≤ s′ ≤ r0 then we have a canonical map
Q[s,r0] → Q[s′,r0] and the module of global sections is

Q := Γ(Xr0 ,Q) = lim
←− s→0+Q[s,r0].

This is a module over Rr0X . However, one cannot expect in general to have Q inherit any finiteness
properties as a module over Rr0X . To explain the precise situation under which we can expect this,
we make the following definiton.

Definition. A coherent sheaf Q = (Q[s,r]) on Xr0 is said to be uniformly finitely presented if
there exists a countable cover {[si, ri]}i∈N for (0, r0] and a pair of integers (m,n) ∈ N⊕2 such that
each module Q[si,ri] has a finite presentation(

R[si,ri]
X

)⊕m
→
(
R[si,ri]
X

)⊕n
→ Q[si,ri] → 0.

We say that Q is uniformly finite projective if in addition each Q[s,r] projective (or, what is the
same, flat).

Note that if we fix s < r then to check Q[s,r] is flat it suffices to check that Q[s′,r′] is flat for
[s′, r′] ⊃ [s, r]. Thus, to check that every module Q[s,r] in a coherent sheaf Q is flat, it is enough to
see it on a countable cover by the data (b).

Proposition 1.8. The natural functor{
finitely presented
Rr0X -modules

}
→
{

uniformly finitely presented
coherent sheaves on Xr0

}
Q 7→ (Q⊗Rr0X R

[s,r]
X )0<s≤r≤r0

is an equivalence of categories. Moreover, it induces an equivalence between the subcategories{
finite projective
Rr0X -modules

}
→
{

uniformly finite projective
coherent sheaves on Xr0

}
.

Proof. That (Q[s,r]) = (Q⊗Rr0X R
[s,r]
X ) is a uniformly finitely presented coherent sheaf is clear

since any finite presentation of Q over Rr0X provides us with a uniform finite presentation for the
Q[s,r]. To see that it is essentially surjective we note that if Q = (Q[s,r]) is a coherent sheaf then

(a) Q[s,r] ∼= Γ(Xr0 ,Q)⊗Rr0X R
[s,r]
X by [41, Lemma 2.1.6(3)], and

(b) if Q is uniformly finitely presented (resp. uniformly finite projective) then Γ(Xr0 ,Q) is
finitely presented over Rr0X (resp. finite projective) by Proposition 2.1.15 of loc. cit..

This completes the proof. �

With this in hand, we will now deal exclusively with the global sections of coherent sheaves.
However, notice that the Proposition 1.3 and Corollary 1.4 apply to the global sections of any
coherent sheaf now.

Remark. The rings R[s,r]
X are all noetherian and thus the category of finitely presented modules

over R[s,r]
X is abelian. The ring R is not noetherian, but the category of finitely presented modules

over R is abelian still by Proposition 1.7. Is the same true for RX (or Rr0X )? Note that by [41,
Lemma 2.1.12, Proposition 2.1.15(1)], if α : Q→ Q′ is a surjection of finitely presentedRr0X modules
then ker(α) is finitely generated over Rr0X .
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1.3. (ϕ,Γ)-modules

Proposition 1.8 tell us that in order to obtain a finite projective Rr0X -module we will need to
construct a compatible system of finite R[s,r]

X -modules whose number of generators does not expand
as s and r varies, i.e. the generators can be spread out over the entire half open annulus. One
situation where this arises is case of ϕ-modules so we begin with that theory. We end the section
with a brief discussion of the relation between (ϕ,Γ)-modules and Galois representations.

1.3.1. Definition. On the ring R there is a collection of Qp-linear operators. Denote by Γ
the group Z×p . Then, for each γ ∈ Γ we define an operator on R by the formulas

(γ · f)(T ) = f((1 + T )γ − 1).

We have as well one more operator

(ϕ · f)(T ) = f((1 + T )p − 1).

It can be checked that these operations are well-defined (i.e. preserve the convergence condition on
R) and that they commute. Notice that if we denote by r(f) the radius on which f converges then
r(γf) = r(f) and r(ϕf) ≤ r(f) (and often r(ϕf) = r(f)/p). In fact, ϕ induces natural inclusions

ϕ : R[s,r] ↪→ R[s/p,r/p],

ϕ : Rr0 ↪→ Rr0/p

and presents the larger rings as finite free modules of rank p over the smaller rings. If we have a
module Q over Rr0 we thus have two different ways of extending scalars from Rr0 to Rr0/p. We
denote by ϕ∗Q the tensor product Q ⊗Rr0 Rr0/p where we use ϕ : Rr0 → Rr0/p and Q

∣∣
(0,r0/p]

the

same tensor product but by using the restriction map resr0r0/p : Rr0 → Rr0/p. If X = Sp(A) we
extend the definition(s) to R?

X by making ϕ and Γ act trivially on the coefficients A. We begin by
studying the action of ϕ on modules over Rr0X .

Definition. A generalized ϕ-module over Rr0X is a finitely presented Rr0X -module Q together
with an isomorphism ϕ∗Q ∼= Q

∣∣
(0,r0/p]

of Rr0/pX -modules . We say that Q is a ϕ-module (dropping
the word generalized) if Q is projective.

If α : ϕ∗Q→ Q
∣∣
(0,r0/p]

is a given isomorphism then we obtain an operator

Q ↪→ ϕ∗Q
α−→ Q

∣∣
(0,r0/p]

which we denote by ϕ as well. Moreover, if f ∈ Rr0X then ϕ(fq) = ϕ(f)ϕ(q) (these are all elements
of Q

∣∣
(0,r0/p]

).
If Q is a generalized ϕ-module then by Proposition 1.8 we know that it arises as the global

sections of a coherent sheaf Q = (Q[s,r]) on Xr0 . Moreover, it is clear to see that the condition
ϕ∗Q ∼= Q

∣∣
(0,r0/p]

is the same as the the condition that there are isomorphisms ϕ∗Q[s,r] ∼= Q[s/p,r/p] as

modules overR[s/p,r/p]
X , compatible with the restriction maps. In fact, the equivalence of Proposition

1.8 gives us

Proposition 1.9. There is an equivalence of categories{
generalized ϕ-modules

over Rr0X

}
↔
{

coherent sheaves Q = (Q[s,r]) on Xr0 such that
ϕ∗Q[s,r] ∼= Q[s/p,r/p] compatible with restrictions

}
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Proof. Indeed, you just need to check that any element of the left hand side arises from the
right hand side, i.e. such a Q is automatically uniformly finitely presented. However, choosing a
finite presentation for Q[r0/p,r0] and using the condition that (ϕ∗)nQ[r0/p,r0] ∼= Q[r0/pn+1,r0/pn] we
see that this is the case. �

By [11, Proposition 9.4.3/2], the category of coherent sheaves on Xr0 is abelian. The extra
condition on the right hand side is such that we can deduce the following corollary.

Corollary 1.10. The category of generalized ϕ-modules is abelian.

Proof. We just need to check that if Q → Q′ is a morphism of coherent sheaves on the right
hand side of Proposition 1.9 then coker(f) and ker(f) both satisfy the extra compatibilities. Since
ϕ presents R[r/p,s/p]

X as a free R[r,s]
X -module we have that ϕ∗(−) is exact. The result follows from

this. For example,

ϕ∗ coker
(
Q[r,s] f−→ Q′[r,s]

)
∼= coker

(
ϕ∗Q[r,s] → ϕ∗Q′[r,s]

)
.

�

We now define the main objects which we will be dealing with. Recall that Γ = Z×p .

Definition. A generalized (ϕ,Γ)-module Q over Rr0X (or, over Xr0) is a generalized ϕ-module
over Rr0X together with a continuous Rr0X -semi-linear action of Γ commuting with ϕ.

By a generalized (ϕ,Γ)-module over RX (or, over X) we mean an RX-module Q = Qr0⊗Rr0X RX
where Qr0 is a (ϕ,Γ)-module over Rr0X .

If we drop the word generalized throughout, i.e. work with projective objects, we get (ϕ,Γ)-
modules.

Continuing the discussion above, to give a generalized ϕ-module over RX is the same as to
give an RX -semi-linear operator ϕ on Q such that ϕ(Q) generates Q over RX . To give a (ϕ,Γ)-
module, we add in the data of a semi-linear operation of the group Γ. In fact, this is often how we
will specify a (ϕ,Γ)-module. Notice that if Q is a generalized (ϕ,Γ)-module then the ϕ-condition
becomes (the possibly more familiar) condition that ϕ∗Q ∼= Q. By a map f : Q → Q′ in the
category of generalized (ϕ,Γ)-modules over X is a continuous, (ϕ,Γ)-equivariant RX -map. By
definition, such a map arises as a map f r0 : Qr0 → Q′r0 for a sufficiently large r0. When we want
to emphasize the equivariance, we might use a subscript (ϕ,Γ). For example, we write

Hom(ϕ,Γ)(Q,Q
′)

to be the RX -module of equivariant morphisms Q→ Q′. This is again a generalized (ϕ,Γ)-module.
If Q is a (ϕ,Γ)-module and we let Q′ := RX then we get the dual (ϕ,Γ)-module Q∨.

We finish with a lemma which will be used in Chapter 4. It is meant to illustrate how we
can always descend from modules over RX to a question about finite modules over the noetherian
affinoid spaces X [s,r].

Lemma 1.11. Assume that X is reduced. Let Q be a generalized (ϕ,Γ)-module and f : RX → Q
a (ϕ,Γ)-equivariant map. Suppose that there is a Zariski dense set U ⊂ X such that the base change
fu : RL(u) → Qu is injective. Then, f is injective.

Proof. Choose an r0 > 0 such that Q arises from base change from Rr0X and f arises from
base change by a map f r0 : Rr0X → Qr0 . It suffices to show that f r0 is injective. If 0 < s ≤ r0 then
we have the induced map

(1.2) f [s,r0] : R[s,r0]
X → Q[s,r0] = Qr0 ⊗Rr0X R

[s,r0]
X .
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By Lemma [41, Lemma 2.1.6(2)] it suffices to show that each f [s,r0] is injective. Indeed, we have
ker(f r0) = lim

←−
ker(f [s,r0]) and lim

←−
is exact by loc. cit. as well.

To prove that f [s,r0] is injective, we use that R[s,r0]
X is noetherian. Let I := im(f [s,r0]). If u ∈ U

we know that fu is injective since its composition with I ⊗X L(u)→ Qu is. By definition fu is also
surjective and thus an isomorphism. In particular, for all v ∈ U [s,r0] we have that dimL(y) Iy = 1
(notice y is a point in the product U [s,r0] now). Since X [s,r0] is affinoid, U [s,r0] ⊂ X [s,r0] is Zariski
dense and everything in sight is finitely generated we deduce by Proposition 1.3 that dimL(y) Iy ≥ 1
for all y ∈ X [s,r0]. On the other hand, the upper bound dimL(v) Iy ≤ 1 is tautological since I is a

quotient of R[s,r0]
X . Since X [s,r0] is reduced and y 7→ dimL(y) Iy is constant, we get that I is flat over

X [s,r0]. Thus, it follows that R[s,r0]
X

∼= I and we are done. �

Remark. Suppose that t ∈ R (no subscript!). We have the same result if we replace RX by
RX/t. Indeed, all we used is that we arose from base change from one of the noetherian spaces
which build up RX . In the case of RX/t we would work with X ×Qp Z(t) where Z(t) ⊂ A1(0, r0]
is the zero locus of the function t, for r0 sufficiently large.

1.3.2. Relationship with Galois representations. We now recall the relationship between
Galois representations and (ϕ,Γ)-modules. If A is an affinoid Qp-algebra then by a representation
of GQp over A we mean a finite projective A-module V equipped with a continuous A-linear action
of the local Galois group GQp .

Proposition 1.12. Let A/Qp be a finite Qp-algebra. There is a fully faithful ⊗-equivalent
embedding of categories

Drig :
{
A-linear representations V of GQp

}
→ {(ϕ,Γ)-modules over RA} .

It defines an equivalence of categories between the Galois representations and the so-called étale
(ϕ,Γ)-modules. Moreover, Drig induces an isomorphism

Ext1
L[GQp ](V, V ) ∼= Ext1

(ϕ,Γ)(Drig(V ), Drig(V )).

Let us make some remarks on the proof and its history. First, one can reduce to the case
where A is a field by looking at the finitely many localizations Am, each of which is a local Artin
Qp-algebra and then proceeding by induction on the length. So, it remains to consider the case
where L is a field. In that case, analogous results (see [27] and [19]) were first proved with the
Robba ring replaced by different rings of analytic functions on affinoid subdomains of the disc. The
key step in extending this previous work to the Robba ring is Kedlaya’s theorem on slope filtrations
[42, Theorem 6.10]. Kedlaya’s theorem is also how one deduces the second point of the proposition
(see [5, Proposition 2.2.6]).

Now let X = Sp(A) be the rigid space associated to an affinoid Qp-algebra. Looking ahead
to the applications in Chapter 5 we see that we are going to begin with Galois representations (of
a global Galois group) over an affinoid base like X and then study the behavior at p via (ϕ,Γ)-
modules. Thus, it is important that one can convert a Galois representation over an affinoid base
into a (ϕ,Γ)-module and vice versa, at least locally.

Proposition 1.13 ([40, Theorem 3.11, Theorem 0.2]). There is a fully faithful embedding

Drig :
{
A-linear representations V of GQp

}
↪→ {(ϕ,Γ)-modules over RX} .

Moreover, if Q is a (ϕ,Γ)-module over RX and Qx = Drig(Vx) for some point x ∈ X and some
Galois representation Vx over L(x) then there exists an affinoid neighborhood U of X and an A-
linear representation VU over U such that Drig(VU ) = Q

∣∣
U

as (ϕ,Γ)-modules over RU .
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Remark. We have stated the most precise result that we know, but we are actually only
going to require that we can convert (ϕ,Γ)-modules back into Galois representations over finite
thickenings of the residue fields (cf. §5.3). Thus, we could replace the “moreover” in the above
statement with the “moreover” of Proposition 1.12 would be enough.
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CHAPTER 2

Arithmetic theory of Galois representations and (ϕ, Γ)-modules

In this chapter we will expand on the theory of (ϕ,Γ)-modules over finite Qp-algebras. Recall
that if L is a p-adic field then the category of continuous L-linear representations of GQp is naturally
a full subcategory of the category of (ϕ,Γ)-modules over RL. Our main goal is to explain how to
fruitfully use this embedding to gain insight into the structure of Galois representations. Perhaps
the most important, recent, development in understanding Galois representations through (ϕ,Γ)-
modules has been Colmez’s notion of triangulations. The definition is so simple we can give it in
this introduction: a triangulation of a Galois representation V is a full (ϕ,Γ)-stable filtration (with
free quotients) inside the (ϕ,Γ)-module Drig(V ). Furthermore, the construction of triangulations is
simple in a very important situation: the set of triangulations of a crystalline Galois representation
are in one-to-one correspondence with orderings of the crystalline eigenvalues, at least in a generic
situation.

As it turns out, there are many more examples of trianguline representations. In fact, we will
explain in Chapter 4 that certain p-adic families of Galois representations are canonically triangu-
lated (though this particular fact was known, in some sense, prior to our work). This multitude
of examples provides us with a natural setting in which to see classical Galois representations. In
order to paint this beautiful picture, however, we need to set straight certain foundational aspects.
Thus, our first goal in this chapter is to survey the arithmetic aspects of (ϕ,Γ)-modules.

To any given triangulation (of, say, a crystalline Galois representation) there is the notion of
being non-critical or critical. It turns out that over a p-adic family, the canoncial triangulations
mentioned above only suffice at over the non-critical locus. This realization forces us to consider
a generalization of triangulations, known as parabolizations—the terminology is due to Chenevier.
Our second main goal in this chapter is to draw out the notion of criticality from the theory of
triangulations and justify the construction of parabolizations instead.

The arrangement is as follows. First, we expand on and precise the relationship between Galois
representations and (ϕ,Γ)-modules which we began in the previous section. This includes a brief,
but explicit, description of the extension of Fontaine’s functors of p-adic Hodge theory from the
category of Galois representations to the category of (ϕ,Γ)-modules. In the same spirit, we next
review Herr’s extension of the Galois cohomology. This includes the fundamental calculations of
Colmez and Liu in the rank one case or, what amounts to the same, the trianguline case. It is in
the third section that we carefully expose the fundamental notion of parabolizations and criticality.

2.1. Foundations of (ϕ,Γ)-modules

Throughout this section A will denote a finite Qp-algebra and in the case that A is a field we
will write A = L. Recall Proposition 1.12 implies that V 7→ Drig(V ) is a fully faithful embedding
of the category of A-linear representations V of GQp into the category of (ϕ,Γ)-modules over the
Robba ring RA. We begin with just a brief tour of this relationship. One should also look ahead
to the study of crystalline representations beginning with Proposition 2.21.

2.1.1. Examples. We first begin with the rank one case. Let δ : Q×p → A× be a continuous
character. We define a rank one (ϕ,Γ)-module RA(δ) as follows. It is a free rank one RA-module
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with basis e and (ϕ,Γ)-action on e given by

ϕe = δ(p)e γe = δ(γ)e.

We extend the action to RAe semi-linearly with respect to the coefficients RA. The fact that δ is
continuous implies that the action extends to all of Γ on RAe. It arises from a module over Rr0A
for any r0.

On the other hand, we could first begin with a continuous character χ : GQp → A×. If
WQp ⊂ GQp is the Weil group of Qp then local class field theory gives us a diagram

WQp
//

��

W ab
Qp

��

Art−1
p
// Q×p

��

GQp
// Gab

Qp

Art−1
p
// Q̂p

×

where the local Artin maps Artp are isomorphisms. The character χ factors through Gab
Qp

and thus
we can consider the character

δχ := χ
∣∣
W ab

Qp

◦Artp : Q×p → A×.

Then, Drig(χ) = RA(δχ). The following completely describes all the rank one (ϕ,Γ)-modules.

Proposition 2.1 ([5, Proposition 2.3.1]). If D is a (ϕ,Γ)-module of rank one over RA then
D ∼= RA(δ) for some continuous character δ : Q×p → A×. Such a (ϕ,Γ)-module arises from a
Galois character χ if and only if vp(δ(p) mod mA) = 0.

We now give some typical examples. Here, and forever, we denote z : Q×p → Q×p is the identity
map and |z| : Q×p → Q×p is the p-adic norm.

Example 2.2. Let V = χcycl be the the p-adic cyclotomic character. Since the local Artin map
is normalized so that p 7→ Frobp we have that for x ∈ Q×p ,(

χcycl

∣∣
W ab

Qp

◦Artp

)
(x) = xp−vp(x).

In particular, δχcycl
(p) = 1 and δχcycl

(γ) = γ for γ ∈ Z×p . We write this thusly: δχcycl
= z |z|. If n is

an integer we can take the nth power of this map and get that δQp(n)(p) = (z |z|)n.

Example 2.3. Let α ∈ L×. Then we define a character unr(α) : Q×p → L× given by p 7→ α

and γ 7→ 1 for γ ∈ Z×p . This arises as an unramified character χ of GQp if and only if vp(α) = 0.

Example 2.4. If D is a (ϕ,Γ)-module over RA and δ : Q×p → A× is a continuous character
then we denote

D(δ) := D ⊗RA RA(δ).
We refer to this module as being obtained by twisting D by δ. Mimicking the situation with Galois
representation, we use the notation D(n) to denote D ((z |z|)n), for n ∈ Z.

Suppose still that δ : Q×p → A× is a continuous character and we consider RA(δ). We define
the weight of δ as

wt(δ) := − log(δ(1 + p))
log(1 + p)

= − d

dγ

∣∣
γ=1

δ(γ).

Such weights will appear as the Hodge-Tate-Sen weights of trianguline (ϕ,Γ)-modules (cf. Example
2.9 and Lemma 2.20).
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Example 2.5. For example, wt(z |z|) = −1, which agrees with our normalization that the
cyclotomic character χcycl has Hodge-Tate weight −1.

Example 2.6. Going back to the twisting for a moment, suppose that A is Artinian and
κ ∈ mA ⊂ A. Then, we can define the character κ : Q×p → A× given by z 7→ exp(κ logp(z)) (the
series converges because κ is nilpotent). We have that the character κ has weight −κ. Thus if D
is a (ϕ,Γ)-module over RA we can form the twist D(κ) and “change the weight”.

One specific thing we have somehow managed not to mention is the element t ∈ RL. It plays
the role of a period for the p-adic exponential function and permeates the entire theory. To that
end, we define

t = log(1 + T ) = T − T 2

2
+
T 3

3
− · · · .

This converges on A1(0,∞]. Recall that we defined the action of ϕ and Γ in §1.3.1. If we compute
the action on t we see easily that ϕ(t) = pt and γ(t) = γt. Thus t ∈ RL is an eigenvector for
the operators ϕ and Γ. Said another way, the submodule tRL is a rank one (ϕ,Γ)-submodule.
In the previous notation we have tRL = RL(z). Similarly, trRL is a rank one submodule of RL
where the action is through the character z 7→ zr. Its weight is −r. Notice that if D ⊂ RL is
any (ϕ,Γ)-submodule then by Proposition 1.7 we know that it is rank one, generated by some
element f ∈ RL. The following tells us all the possible f and is a first step in the calculation of
the cohomology groups (see Proposition 2.13).

Proposition 2.7 ([23, Remark 3.3]). Every (ϕ,Γ)-submodule of RL is of the form trRL with
r ≥ 0.

Recall, we have defined generalized (ϕ,Γ)-modules on page 24. If D is a generalized (ϕ,Γ)-
module over RL (which is a domain) then we denote by Dtor the RL-torsion submodule. The
quotient D/Dtor is then a finitely generated, torsion-free RL-module. Following Proposition 1.7,
we deduce that D/Dtor is free over RL and the sequence

0→ Dtor → D → D/Dtor → 0

is split as RL-modules. In particular, Dtor is a generalized (ϕ,Γ)-module which is completely
torsion. In fact, the following result tells us that every element in Dtor is killed by a power of t.

Corollary 2.8. Let D be a generalized (ϕ,Γ)-module over RL. Then D is free if and only if
D is t-torsion-free. If S is a torsion (ϕ,Γ)-module then there exists integers m1, . . . ,mr ≥ 1 such
that

S ∼=
r⊕
i=1

RL/tmi .

as RL-modules.

Proof. We use the notation as above. Our goal is to show that Dtor is t-torsion. Consider
any finite presentation of RL-modules

0→ D′ → R⊕dL → Dtor → 0

with D′ finitely generated over RL. Applying Proposition 1.7 again we see that there is a basis
e1, . . . , ed for R⊕dL and element f1 | · · · | fi such that D′ is free on the elements fjej . We claim
that the submodule fjRL is (ϕ,Γ)-stable inside RL. Indeed, since Γ acts invertibly on Dtor and
ϕ∗Dtor

∼= Dtor we have that for each γ, γf1, . . . , γfi is a list of elementary divisors for Dtor as well
as ϕf1, . . . , ϕfi. Since the ideals (fj) are unique, we see that they are all (ϕ,Γ)-stable. Then, by
the Proposition 2.7 they must all be of the form trjRL. Thus Dtor is t-torsion. This also proves
the final statement. �
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Definition. We say that D is a torsion (ϕ,Γ)-module if D = Dtor. We say that D is pure
torsion if D is free over RL/tr for some r > 0.

If D is a free RL-module and D′ ⊂ D is a submodule then we can define the saturation of D′

inside D as
D′ sat = D ∩ (D′ ⊗RL Frac(RL)).

This is the largest submodule of D with the same rank as D′ and whose quotient D/D′ sat is
free over RL. By Corollary 2.8 we have that in the case that D is a (ϕ,Γ)-module and D′ is a
(ϕ,Γ)-submodule then

D′ sat = D ∩D′[1/t].
For example, the saturation of trRL inside RL is just RL itself.

2.1.2. p-adic Hodge theory of (ϕ,Γ)-modules. We now take a moment to recall the exten-
sion of Fontaine’s p-adic Hodge theory [28] from the category GQp-representations to the category
of (ϕ,Γ)-modules. The original reference for this material is [8]. Our recollection has been patched
together from §5 of loc. cit., [5, §2.2.7] and [53, §3]. We assume, however, that the reader is familiar
with Fontaine’s original theory (so that they can make sense of Proposition 2.10). Specifically, we
freely use the notations DSen, DdR, etc. for Fontaine’s functors{

L-linear representations of GQp

}
−→ {some linear algebraic category} .

and hope that they make sense.
Throughout this discussion we work only over Qp. If we extend the coefficients to some p-adic

field L then all it amounts to is changing statements below about the rank from R to RL and
dimensions to become over L. Let D be a (ϕ,Γ)-module over R and fix an r0 such that D arises
via base change from a (ϕ,Γ)-module Dr0 over Rr0 . We begin first with Sen’s theory (see [57] for
the Galois representation story). For n sufficiently large, all of the pnth roots of unity live inside
the half open annulus A1(0, r0]. For each choice ζpn of such a root of unity we get a surjection
Rr0 � Qp(ζpn) and thus we can define

DSen(D) := (Dr0 ⊗Rr0 Qp(ζpn))⊗Qp(ζpn ) Qp(ζp∞).

Here, Qp(ζp∞) = lim
−→

Qp(ζpn) and we view Γ as the Galois group Gal(Qp(ζp∞)/Qp) identified with

Z×p via the cyclotomic character

Gal(Qp(ζp∞)/Qp) = Γ
χcycl−→ Z×p .

The object DSen(D) is a vector space over Qp(ζp∞) of dimension equal to rankRD. Further, it is
equipped with a Qp(ζp∞)-semi-linear action of the group Γ. The formula we have given explicitly
depends on r0 and n, though for r0 sufficiently small and n sufficiently large it is independent of
such a choice. The Qp(µp∞)-linear operator

ΘSen(x) = − d

dγ

∣∣
γ=1

(x)

is well-defined on DSen(D) and its characteristic polynomial has coefficients over Qp. The functor
D 7→ DSen(D) is exact because it is obviously right exact and preserves rank/dimension.

Definition. The Hodge-Tate-Sen weights (with multiplicty) of D are the eigenvalues of ΘSen

(with multiplicity) acting on DSen(D). We say that D is Hodge-Tate if its Hodge-Tate-Sen weights
are all integers and the operator ΘSen is semi-simple. Finally, we say that D is regular if each
Hodge-Tate-Sen weight has multiplicity one.
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Example 2.9. If D = RL(δ) then it is easy to calculate that ΘSen = wt(δ). The rank one
(ϕ,Γ)-module RL(δ) is Hodge-Tate if and only if δ = zrεunr(α) where ε is a finite order character
Z×p → L× and α ∈ L×. In that case, its weight is −r.

Since t has a simple zero at each primitive pnth root of unity, the completed local ring at any
such point in Xr0 is a power series ring over t (with coefficients in the residue field). Thus for n
sufficiently large we get a natural Γ-equivariant map

ιr0,n : Rr0 → Qp(ζpn)[[t]],

compatible with ϕ in the sense that the diagram

(2.1) Rr0

ϕ

��

ιr0,n // Qp(ζpn)[[t]]

t7→pt
��

Rr0/pιr0/p,n+1

// Qp(ζpn+1)[[t]]

is commuting. In any case, we use one of these maps to define

D+
dif(D) := (Dr0 ⊗Rr0 Qp(ζpn)[[t]])⊗Qp(ζpn )[[t]] Qp(ζp∞)[[t]].

The compatibility (2.1) implies that the definition of D+
dif it is independent of r0 and n sufficiently

large. We as well define

Ddif(D) := D+
dif(D)[1/t] = Dr0 ⊗Rr0 Qp(ζp∞)((t)).

The functor D 7→ D+
dif(D) is again exact, as is D 7→ Ddif(D) (being a localization of the other one).

On Ddif(D) there is a Qp(ζp∞)((t))-semi-linear action of Γ again and we set

DdR(D) := Ddif(D)Γ.

Notice that (Qp(ζp∞)((t)))Γ = Qp. Thus DdR(D) is a Qp-vector space. One sees as well (as is
usual in Fontaine’s theory) from this that the natural map

DdR(D)⊗Qp Qp(ζp∞)((t))→ Ddif(D)

is injective and thus

(2.2) dimQp DdR(D) ≤ rankR(D).

On the other hand, (−)Γ is only left exact in general and thus we can only expect DdR to be left
exact.

Definition. We say that D is de Rham if dimQp DdR(D) = rankRD.

The Qp-vector space DdR(D) has as well the extra structure of the Hodge filtration

FiliDdR(D) :=
(
Dr0 ⊗Rr0 tiQp(ζp∞)[[t]]

)Γ
, i ∈ Z.

We have Fili+1DdR(D) ⊂ FiliDdR(D) and Fil0DdR(D) = D+
dif(D)Γ. This explains the “plus”-

notation—it corresponds to the non-negative piece of the Hodge filtration. We also sometimes
denote this by D+

dR(D). Since DdR(D) is finite-dimensional we see that the Hodge filtration is
exhaustive (that is, DdR(D) = FiliDdR(D) for i small) and separated (that is, (0) = Filj DdR(D)
for j large). Finally, we set

Dcris(D) := (D[1/t])Γ .

We evidently have an inclusion Dcris(D) ↪→ DdR(D) (which depends on the choice of r0 in the
definitions above) and via this we can take the induced Hodge filtration FiliDcris(D) on Dcris(D).
The operator ϕ on D[1/t] preserves the Γ-invariants because ϕ and Γ commute and thus Dcris is
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a Qp-vectorspace together with a linear action of ϕ. Beware that these two actions of ϕ (on D
versus Dcris(D)) are related but by a dictionary one has to keep track of (cf. Proposition 2.21).
Analogous to the de Rham case, the natural map

Dcris(D)⊗L RL[1/t]→ D[1/t]

is injective. This implies that dimQp Dcris(D) ≤ rankRD. Again, Dcris is not exact in general, but
is left exact.

Definition. We say that D is crystalline if dimQp Dcris(D) = rankRD.

In general we have that

crystalline =⇒ de Rham =⇒ Hodge-Tate.

Furthermore, for a de Rham representation we have that the Hodge-Tate-Sen weights (which are
all integers) are the indexes where the Hodge filtration jumps and the multiplicity of a particular
weight is read off by the dimension of the associated graded.

Proposition 2.10. Let V be an L-linear representation of GQp. Then there are canonical
isomorphisms D(V ) ∼= D(Drig(V )) where D is any of the functors DSen, D+

dif , DdR or Dcris given
above.

Proof. For D+
dif see [8, Corollarie 5.8] and for the others, see [5, Proposition 2.2.9]. �

We record the following for future use. Notice that since the quotient of two (ϕ,Γ)-modules need
not be a (ϕ,Γ)-module (unlike Galois represenations), there is something to say at the beginning
of the following proof.

Lemma 2.11. Suppose that D is de Rham (respectively, crystalline) and that D′ ⊂ D is a
submodule. Then D′ is de Rham (respectively, crystalline).

Proof. The proof is the same in either case so let us assume that D′ is de Rham. If D′ sat

is the saturation of D′ inside D then by the remarks proceeding Corollary 2.8, and definition of
DdR, we have DdR(D′) = DdR(D′ sat). Thus, we may assume that D′ is saturated inside D and the
quotient D/D′ is a (ϕ,Γ)-module. The argument now is a standard one from Fontaine’s theory,
using the left exactness of DdR(−) and the inequality (2.2). �

We end this subsection with an explicit example which will elucidate the two different actions
of ϕ which are floating around.

Example 2.12. We consider the (ϕ,Γ)-module tnRL = RL(zn) =: Dn. This is Hodge-Tate of
weight −n. Let e = tn be the basis for Dn. Then the element e′ = t−ne is fixed by Γ and ϕ acts
on e′ with eigenvalue 1. Thus Dn is crystalline and ϕ acts on Dcris(Dn) with the eigenvalue φ = 1.
The Hodge filtration is concentrated in degree −n.

In particular, we have that Dcris(Dn) is weakly admissible in the sense of Fontaine [29] if and
only if n = 0. Since being weakly admissible is equivalent to being admissible that we recover that
tnRL is the in image of Drig if and only if n = 0. This agrees with Proposition 2.1.

On the other hand, consider D = RL(z |z|) with a basis e. This has Hodge-Tate weight -1 and
we see that t−1e is a basis for Dcris(D). Moreover,

ϕ(t−1e) = p−1t−1(p |p|)e = p−1(t−1e).

Thus ϕ acts on Dcris(D) with eigenvalue φ = p−1. Here now you see that vp(φ) is the unique
Hodge-Tate weight of D and thus Dcris(D) does arise from a Galois representation. Of course,
D = Drig(χcycl).
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Remark. The functor Dcris on Galois representations defines an equivalence of categories be-
tween all the crystalline Galois representations and the category of weakly admissible filtered ϕ-
modules (over Qp). One of Berger’s results [9] is that Dcris induces an equivalence of categories
between the category of crystalline (ϕ,Γ)-modules and all the filtered ϕ-modules.

2.2. Galois cohomology I

In this section we continue of (ϕ,Γ)-modules by recalling the cohomology of (ϕ,Γ)-modules over
a field. The computations in the rank one case will play a fundamental role in the construction
of analytically varying filtrations of (ϕ,Γ)-modules over p-adic families in Chapter 4. In the final
subsection we define and study the analog of the Bloch-Kato Selmer groups using the p-adic Hodge
theory we just explained.

2.2.1. The Herr complex. Let L be a p-adic field. If V is an L-linear representation of GQp

then we use H i(GQp , V ) to denote the continuous cohomology of GQp with coefficients in V . These
are finite-dimensional L-vector spaces concentrated in degrees 0 ≤ i ≤ 2.

The extension of Galois cohomology from the category of L-linear representations of Galois
groups to the category of (ϕ,Γ)-modules is due to Herr [36]. In the case of a generalized (ϕ,Γ)-
module, Liu [46] defined and studied the cohomology. The extension to the torsion case, in partic-
ular, is used for deducing (ϕ,Γ)-versions of local Tate duality and the Euler-Poincaré-Tate charac-
teristic formula (see §2.2.3). Some of the calculations we recall predate Liu’s work and were carried
out by Colmez [23] in his study of two-dimensional trianguline (ϕ,Γ)-modules.

Suppose that Q is a generalized (ϕ,Γ)-module over L. Denote by ∆ the p-torsion subgroup of
Γ (which only exists if p = 2). We choose a topological generator γ for Γ/∆ and we define two
maps:

Q∆
d1
γ
// (Q∆)⊕2

d2
γ
// Q∆

where

d1
γ(x) = ((ϕ− 1)x, (γ − 1)x) ,

d2
γ((x, y)) = (γ − 1)x− (ϕ− 1)y.

It is easy to see that d2
γ ◦ d1

γ = 0 and we denote by C•γ(Q) the associated complex. If γ and γ′ are
two different choices of generator Γ/∆ then C•γ(Q) is the same as C•γ′(Q) up to quasi-isomorphism,
and so we define

H i(Q) := H i(C•γ(Q)),

for any choice of γ. We have that H0(Q) is the set of simultaneous invariants Qϕ=1,Γ=1 for ϕ and
Γ acting on Q. Alternatively,

H0(Q) = Hom(ϕ,Γ)(RL, Q).

As remarked in [23, §2.1] we have that if Q is free then H1(Q) is canonically isomorphic to
Ext1

(ϕ,Γ)(RL, D). The cohomology is concentrated in degrees at most two, and we will see that
the degree two term is related to the degree zero term (of a different module, see Proposition 2.16).
In general these are finite-dimensional L-vector spaces and associated to a short exact sequence

0→ Q′ → Q→ Q′′ → 0

of generalized (ϕ,Γ)-modules over L we get a long exact sequence

0→ H0(Q′)→ H0(Q)→ H0(Q′′)→ H1(Q′)→ H1(Q)→ · · ·
in cohomology.
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2.2.2. Rank one and pure torsion cases. Now suppose that δ : Q×p → L× is a continuous
character. We introduce some notation to make statements slightly shorter. We define H•(δ) :=
H•(RL(δ)) and T̂ = Homcont(Q×p ,Gm/Qp

). Inside T̂ we have two subsets

Ŝ+ =
{
z−j : 0 ≤ j

}
,

Ŝ− =
{
|z| zi : i ≥ 1

}
.

You can remember the decoration ± because the elements of Ŝ+ have non-negative weight whereas
the elements of Ŝ− have negative weight. Finally, we denote by T̂g = T̂\(Ŝ+ ∪ Ŝ−). These are the
“generic characters” and the terminology is justified by the following calculation.

Proposition 2.13. Suppose that δ : Q×p → L× is a character. Then,

dimLH
0(δ)) =

{
0 δ /∈ Ŝ+

1 δ ∈ Ŝ+
,

dimLH
1(δ) =

{
1 δ ∈ T̂g
2 δ /∈ T̂g

, and

dimLH
2(δ) =

{
0 δ /∈ Ŝ−

1 δ ∈ Ŝ−.

Proof. For j = 0 and j = 1 this is [23, Theorem 2.9] and for j = 2 this is [46, Proposition
2.12]. �

We are going to also need to make sure we know the cohomology of torsion (ϕ,Γ)-modules. For
that, we need the following.

Proposition 2.14. If δ : Q×p → L× is a continuous character then H2(RL(δ)/tr) = (0). If
j = 0 or j = 1 then

dimLH
j(RL(δ)/tr) =

{
1 if 0 ≤ w(δ) < r,
0 otherwise.

Proof. The case of j = 0 is [23, Proposition 2.18]—note, however, that we use different
conventions then loc. cit. The case of j = 1, 2 follows from [46] (see Proposition 2.16(b)). �

Corollary 2.15. Suppose that η, δ : Q×p → L× are two continuous characters of integer weights
wt(η) ≤ wt(δ). Then, for each integer r > wt(δ)− wt(η), there is an exact sequence

(2.3) 0→ tr−(wt(δ)−wt(η))RL(η)→ RL(η)→ RL(δ)/tr → RL(δ)/twt(δ)−wt(η) → 0.

Proof. By Proposition 2.14 in degree zero we have that if

(2.4) wt(η)− wt(δ) ≤ m < r + (wt(η)− wt(δ))

then
dimL Hom(ϕ,Γ)(t

mRL(η),RL(δ)/tr) = 1.

If m is outside the range (2.4) then there are no (ϕ,Γ)-equivariant maps tmRL(η) → RL(δ)/tr.
Thus, if m ≤ m′ are two different integers then the natural restriction map

Hom(ϕ,Γ)(t
mRL(η),RL(δ)/tr)→ Hom(ϕ,Γ)(t

m′RL(η),RL(δ)/tr)
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is either zero or an isomorphism for dimension reasons. In particular, up to a consistent choice of
scalars in L× we have a diagram

0 // tr−(wt(δ)−wt(η))RL(η) // RL(η)

��

// RL(δ)/tr

0 // tr−(wt(δ)−wt(η))RL(η) // t−(wt(δ)−wt(η))RL(η) // RL(δ)/tr // 0

whose rows are exact and with injective middle vertical arrow. This gives exactness of the first
three terms in (2.3). For the final term, note that the injectivity of the middle vertical arrow implies
that we have an isomorphism

coker (RL(η)→ RL(δ)/tr) ∼= coker
(
RL(η)→ t−(wt(δ)−wt(η))RL(η)

)
,

of RL-modules. The exactness of the final term of (2.3) easily follows now. �

2.2.3. Duality and the Euler characteristic formula. In the case of an L-linear represen-
tation V of GQp , one knows that H2(GQp , χcycl) is one-dimensional and the cup product pairing

H i(GQp , V )×H2−i(GQp , V
∨(χcycl))→ H2(GQp , χcycl) ∼= Qp

is a non-degenerate perfect pairing (local Tate duality). We further have the Euler-Poincaré-Tate
characteristic formula:

χ(V ) :=
2∑
i=0

(−1)i dimLH
i(GQp , V ) = −dimL V.

These formulas are extemely important because reduces a questions about first degree cohomology
(the most interesting one!) into questions about invariants of a fixed representation and a twist of
its dual. Their analogies in the theory of (ϕ,Γ)-modules will be fundamental for our comptuations.
Recall that a torsion (ϕ,Γ)-module is a generalized (ϕ,Γ)-module S such that S[1/t] = (0).

Proposition 2.16. [46, Theorems 4.3, 4.7] Let S be a torsion (ϕ,Γ)-module and D a (ϕ,Γ)-
module over RL. Then,

(a) H2(RL(z |z|)) ∼= Qp.
(b) H2(S) = (0) and dimLH

0(S) = dimLH
1(S).

(c) For each i, the pairing

H i(D)×H2−i(D∨(z |z|))→ Qp

given by (a) and the cup product is a non-degenerate perfect pairing.
(d) We have

− rankRL D =
2∑
i=0

(−1)i dimLH
i(D).

Note that part (d) is true for S as well if we agree that a torsion (ϕ,Γ)-module has rank zero.

2.2.4. Bloch-Kato Selmer groups. Suppose that V is an L-linear representation of GQp .
Then Bloch and Kato [10] have defined and studied subspaces H1

f (GQp , V ) and H1
g (GQp , V ) of

the Galois cohomology H1(GQp , V ) which, at least in the case that V is crystalline, parameterize
extensions W of L by V which are crystalline. They play a local at p role in the construction of
global Galois cohomology groups whose dimension is one of the terms in the so-called Bloch-Kato
conjecture. In our deformation theory computations, we will need to consider these Selmer groups.
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Of particular important to use will be the case where D = adD0 is the adjoint module attached to
a (ϕ,Γ)-module D0.

Recall that in §2.1.2 we gave explicit descriptions of Fontaine’s functors in terms of (ϕ,Γ)-
modules. We have, as well, remarked that the cohomology group H1(D) of a (ϕ,Γ)-module is
canonically isomorphic to the group of extensions Ext1

(ϕ,Γ)(RL, D). If c is a cocycle in H1(D) then
we denote by Dc the extension

0→ D → Dc → RL → 0
of (ϕ,Γ)-modules corresponding to the cocycle c. Since Ddif(−) is an exact functor. Since taking
Γ-invariants we get an exact sequence

0→ DdR(D)→ DdR(Dc)→ L
∂cdR−→ H1(Γ, Ddif(D)).

On the other hand, the functor Ddif(−) defines for us a canonical morphism of L-vector spaces

H1(D) ddR−→ H1(Γ, Ddif(D)).

Similarly, the functor D 7→ D[1/t] is exact and so taking Γ-invariants, we get an exact sequence

0→ Dcris(D)→ Dcris(Dc)→ L
∂ccris−→ H1(Γ, D[1/t]).

Again, the other part of the picture is a functorial (in D) map

H1(D) dcris−→ H1(Γ, D[1/t]).

We then define the Bloch-Kato Selmer groups in the context of (ϕ,Γ)-modules.

Definition. The Bloch-Kato Selmer groups are

H1
f (D) := ker

(
H1(D) dcris−→ H1(Γ, D[1/t])

)
H1
g (D) := ker

(
H1(D) ddR−→ H1(Γ, Ddif(D))

)
Proposition 2.17. Let c ∈ H1(D) be represented by an extension 0 → D → Dc → RL → 0.

Then c ∈ H1
f (D) (resp. c ∈ H1

g (D)) if and only if the sequence

(2.5) 0→ D?(D)→ D?(Dc)→ L→ 0

is still exact where ? = cris for H1
f and ? = dR for H1

g .

Proof. The proof is the same for either so let us just assume that we are working in the case
of Dcris. It is easy to check that the relation between dcris and ∂cris is given by dcris(c) = ∂ccris(1).
Thus, the sequence (2.5) is exact if and only if ∂ccris(1) = 0, if and only if c ∈ ker(dcris). �

The alternative description easily shows us that we have the following corollary.

Corollary 2.18. Suppose that D is de Rham (resp. crystalline). Then c ∈ H1
g (D) (resp.

c ∈ H1
f (D)) if and only if Dc is de Rham (resp. crystalline).

As one expects, this is all completely compatible with the usual theory coming from GQp-
representations. We have as well analogs of the computations originally done by Bloch and Kato
in that case (see [10, Corollary 3.8.4]).

Proposition 2.19 ([6, Proposition 1.4.2, Corollary 1.4.5]). Suppose that V is an L-linear rep-
resentation of GQp. The natural isomorphism H1(GQp , V ) ∼= H1(Drig(V )) induces isomorphisms

H1
f (GQp , V )

∼=−→ H1
f (Drig(V )), and

H1
g (GQp , V )

∼=−→ H1
g (Drig(V )).
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Furthermore, if D is de Rham. Then,

dimLH
1
f (D) = dimH0(D) + dimDdR(D)/D+

dR(D)(2.6)

dimLH
1
g (D) = dimH1

f (D) + dimDcris(D∨)ϕ=p.(2.7)

In particular, if D is crystalline and p−1 is not a ϕ-eigenvalue of Dcris(D) then H1
f (D) = H1

g (D).

The reader should note that the the formulas are very easy to compute. For example, suppose
that D is crystalline and that p−1 is not an eigenvalue for ϕ on Dcris(D). Then, dimLH

1
f (D) is

exactly the number of negative Hodge-Tate weights of D plus the number of (ϕ,Γ)-equivariant
copies of RL which are embedded in D.

2.3. Triangulations and parabolizations

We now move on to the special class of (ϕ,Γ)-modules we will study for the rest of this thesis:
the trianguline (ϕ,Γ)-modules. The key feature we will exploit is that the Galois representations
which arise from algebraic geometry become reducible (in many ways) when we pass to the world
of (ϕ,Γ)-modules. Thus, we still denote by L a p-adic field and by A a finite L-algebra.

2.3.1. Parabolizations of (ϕ,Γ)-modules. Let D be a (ϕ,Γ)-module overRA and we denote
its rank by n.

Definition. Fix an integer 1 ≤ s ≤ n. A parabolization, of length s, of D is a strictly
increasing filtration P

P : 0 = P0 ( P1 ( P2 ( · · · ( Ps = D

such that
(a) each Pi is a (ϕ,Γ)-submodule of D over RA, and
(b) coker(Pi−1 → Pi) is a direct summand of Pi as a RA-module for each i = 1, . . . , s.

In the case that s = n (i.e. we have a full filtration inside D) we call P a triangulation. In that
case, Proposition 2.1 implies that each (ϕ,Γ)-module Gri P := Pi/Pi−1 is rank one and the n-tuple
(δ1, . . . , δn) of characters δi : Q×p → A× such that

Gri P ∼= RA(δi)

is called the parameter of the triangulation P .

Lemma 2.20. Suppose D is a triangulated (ϕ,Γ)-module of rank n with parameter (δ1, . . . , δn).
The list of Hodge-Tate-Sen weights of D are {wt(δ1), . . . ,wt(δn)}.

Proof. The Hodge-Tate-Sen weights of D only depend on the semi-simplification of D (since
that is true of the eigenvalues of ΘSen acting on DSen(D)). �

Definition. A (ϕ,Γ)-module is said to be trianguline if it has a triangulation.

Using Galois representations arising from algebraic geometry, we can construct many exam-
ples of trianguline (ϕ,Γ)-modules and for each one, many possible triangulations. These different
triangulations corresponding on the Galois side to refinements, which we now define. Assume for
the moment that D is a crystalline (ϕ,Γ)-module over RL where the eigenvalues of ϕ acting on
Dcris(D) all live in L×.

Definition. A partial refinement of D is the choice of a ϕ-stable filtration R of Dcris(D)

R : 0 = R0 ( R1 ( · · · ( Rs = Dcris(D).

If s = n (i.e. we have a full filtration) then we remove the word partial and just refer to R as a
refinement.
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If R is a refinement then it defines an ordering (φ1, . . . , φn) of the crystalline eigenvalues by
insisting that ϕ acting on Ri has eigenvalues {φ1, . . . , φi}. Further, if ϕ has distinct eigenvalues on
Dcris(D) (which will be assumed in our applications) then this ordering is equivalent to a refinement.
Moreover, we also obtain an ordering (s1, . . . , sn) of the Hodge-Tate weights (each of which is an
integer since D is crystalline) by insisting the Ri has weights {s1, . . . , si} with respect to the Hodge
filtration Fil•Dcris(D).

Thus, to a crystalline (ϕ,Γ)-module D we can consider either its triangulations or its refine-
ments. In either case, there is invariant data attached to either:

a triangulation P  the parameter (δ1, . . . , δn)

a refinement R the orderings of eigenvalues the (φ1, . . . , φn)
and the Hodge-Tate weights (s1, . . . , sn) .

The relationship between parabolizations and partial refinements, along with the dictionary of
passing between these invariants, is given by the following. Recall that we defined the unr notation
in Example 2.3.

Proposition 2.21. (a) Let D be a crystalline (ϕ,Γ)-module over RL whose crystalline
eigenvalues all live in L×. Then P 7→ Dcris(P ) induces bijections

{parabolizations of D} ↔ {partial refinements of Dcris(D)} , and

{triangulations of D} ↔ {refinements of Dcris(D)} .

(b) If P is a triangulation with parameter (δ1, . . . , δn) then the orderings associated to Dcris(P )
are given by

(φ1, . . . , φn) = (pwt(δ1)δ1(p), . . . , pwt(δn)δn(p)), and

(s1, . . . , sn) = (wt(δ1), . . . ,wt(δn)).

(c) If R is a refinement with orderings (φ1, . . . , φn) and (s1, . . . , sn) as above, then the param-
eter (δ1, . . . , δn) of the corresponding triangulation P is given by

(δ1, . . . , δn) = (z−s1 unr(φ1), . . . , z−sn unr(φn)).

Proof. For the bijection in this generality, see [16, Lemma 3.10]. The correspondence between
the parameters and the orderings of the eigenvalues/weights is explained in [5, Proposition 2.4.1]
(where the triangulation case of part (a) is also proved). Note there that z

∣∣
Γ

= (z |z|)
∣∣
Γ

and thus
the formulas of loc. cit. are the same as ours. �

In order to illustrate the role that the weights are playing, and because this type of computation
is fundamental to understanding the variation in p-adic families, we include the following worked
example in dimension two.

Example 2.22. Consider what is happening for a two-dimensional crystalline (ϕ,Γ)-module.
Assume that D is a crystalline with regular weights k1 < k2 and distinct eigenvalues {φ, φ′}.
Without loss of generality, Dcris(D)ϕ=φ 6= Filk2 Dcris(D). Thus, the refinement with φ1 = φ orders
the weights (k1, k2) and we get a triangulation1

(2.8) 0→ RL(z−k1 unr(φ)) i−→ D
π−→ RL(z−k2 unr(φ′))→ 0.

The other refinement corresponds to the ordering (φ′, φ), but we need to have two cases in order
to see what the ordering of the weights is.

1In the two-dimensional case, we often write a triangulation as a short exact sequence, the submodule being the
first/only non-trivial step in the triangulation.
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We claim that wt(φ′) := wt(Dcris(D)ϕ=φ′) = k2 if and only if the sequence is split (2.8) (as
(ϕ,Γ)-modules; it is split as anRL-module already). One direction is clear, so assume that wt(φ′) =
k2. Then, we look at the induced triangulation

0→ RL(z−k2 unr(φ′))
j−→ D → RL(z−k1 unr(φ))→ 0.

We claim that j is a section of π. Since

dimL Hom(ϕ,Γ)

(
RL(z−k2 unr(φ′)),RL(z−k2 unr(φ′))

)
= 1

it suffices by way of contradiction to assume that that π◦j = (0). If that is the case then j defines a
non-zero map RL(z−k2 unr(φ′))→ RL(z−k1 unr(φ)), which must be an isomorphism because im(j)
is saturated inside D. However, z−k2 unr(φ′) and z−k1 unr(φ) have different weights, so this is not
possible. Thus, up to a factor of L×, we must have that j is a section of π and thus D is split as a
(ϕ,Γ)-module.

Anyways, what it means is that the triangulation corresponding to (φ′, φ) is one of two possi-
bilities:

0→ RL(z−k2(unr(φ′))→ D → RL(z−k1(unr(φ)))→ 0 (if D is split)
or

0→ RL(z−k1(unr(φ′))→ D → RL(z−k2(unr(φ)))→ 0 (if D is non-split).
If we call (δ1, δ2) the parameter corresponding to (φ, φ′) then the parameter of (φ′, φ) is either
(δ2, δ1) if D is split, or

(zk2−k1δ2, z
k1−k2δ1) = (zwt(δ2)−wt(δ1)δ2, z

wt(δ1)−wt(δ2)δ1)

if D is non-split.

The above example proves the following, which we record for later use:

Lemma 2.23. Suppose that D is a rank two crystalline (ϕ,Γ)-module of regular weight and with
distinct crystalline eigenvalues contained in L×. If (δ, η) is the parameter of some triangulation of
D then the other is given by{

(η, δ) if D is split,
(zwt(η)−wt(δ)η, zwt(δ)−wt(η)δ) if D is non-split.

Revisiting the example one more time, we see that the difference between the ordering of the
weights corresponding to (φ′, φ) was whether or not the line Dcris(D)ϕ=φ′ had the highest weight.
Focusing instead on the weight first, and the action of ϕ second, this is a question of whether or
not the line Filk2 Dcris(D) is ϕ-stable. This leads us to a definition:

Definition. Assume that D is crystalline. Then, a saturated (ϕ,Γ)-submodule P ⊂ D is called
non-critical if there exists an integer k such that Dcris(P )⊕ FilkDcris(D) = Dcris(D). We say that
P is critical if it is not non-critical.

We remark that D itself is always a non-critical submodule of itself. In fact, if k is the highest
Hodge-Tate weight of D then Dcris(D) = Dcris(D)⊕ Filk+1Dcris(D). In general, whether a (ϕ,Γ)-
submodule P of D is critical or not depends on the Hodge-Tate weights of P (relative to the
Hodge-Tate weights of D).

Lemma 2.24. Suppose that D is crystalline and that the Hodge-Tate weights k1 < k2 < · · · < kn
of D are distinct. Let P ⊂ D be a saturated (ϕ,Γ)-submodule of rank m. The following are
equivalent:

(a) P is non-critical;
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(b) Dcris(P )⊕ Filkm+1 Dcris(D) = Dcris(D);
(c) the Hodge-Tate weights of P are the lowest m weights;
(d) detP ⊂ ∧mD is non-critial.

Proof. It is clear that (b) and (c) are equivalent and that (b) implies (a). Conversely, assume
that P is non-critical and choose k such that Dcris(P ) ⊕ FilkDcris(D) = Dcris(D). Since P is
crystalline (Lemma 2.11) we get that d − m = dimL FilkDcris(D). Thus, by regularity of the
Hodge-Tate weights, we get FilkDcris(D) = Filkm+1 Dcris(D) and so (a) implies (b).

We only have to prove that (c) and (d) are equivalent. Notice that (c) is equivalent to the
single Hodge-Tate weight of detP being k1 + · · ·+ km. Moreover, even though ∧mD need not have
distinct Hodge-Tate weights, the lowest weight k1 + · · ·+km is multiplicity one, by the distinctness
of the ki. Thus detP has lowest weight k1 + · · ·+ km if and only if

Dcris(detP )⊕ Filk1+···+km−1+km+1 Dcris(∧mD) = Dcris(∧mD).

This shows the conclusion. �

Notice that the lemma provides us with a way to check that an entire triangulation is non-
critical.

Example 2.25. Suppose that D = Drig(V ) with V a crystalline representation with regular
Hodge-Tate weights k1 < k2 < · · · < kn. Suppose as well that we order the eigenvalues (φ1, . . . , φn)
of ϕ acting on Dcris(D) such that

vp(φ1) < k2

vp(φ1 · · ·φi) < k1 + · · · ki−1 + ki+1.

Then, the refinement (or, rather, triangulation) defined by (φ1, . . . , φn) is non-critical. Indeed,
Dcris(D) is weakly admissible since it comes from a crystalline Galois representation. This implies
that the ϕ-stable line Dcris(D)ϕ=φ1 defines a Hodge weight

s1 ≤ vp(φ1) < k2.

Since s1 must be some weight ki it follows that s1 = k1. Similarly, si = ki for each i. We refer to
the ordering (φ1, . . . , φn) and V as being numerically non-critical (see [5, Remark 2.4.6] as well).

Finally, we end this subsection with a construction that isolates out the pieces of a triangulation
which we will expect to vary in p-adic families. We continue to let D be a crystalline (ϕ,Γ)-module
of rank n.

Definition. Let P be a triangulation of D. We let

Inc := {i : Pi is non-critical} = {i1 < i2 < . . . < is} .
We define the maximal non-critical parabolization P nc as the filtration

P nc : 0 ( Pi1 ( Pi2 ( · · · ( Pis = D.

The remarks preceding Lemma 2.24 show that we are justified in knowing that the top index
is gives D. At least in the case of a (ϕ,Γ)-module D which has regular weights, we see that an
alternative definition is that Pi is a step in the filtration P nc if and only if the weights of Pi are
the lowest possible ones. The definition of non-critical/critical for a single (ϕ,Γ)-submodule of D
extends to triangulations.

Definition. Suppose that P is a triangulation of D. Then, we say that P is non-critical if
P nc = P . Otherwise, we say that P is critical. At the opposite end, we say that P is fully critical
if P nc is the trivial filtration 0 ( D.
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In Example 2.22 we saw that if D is crystalline of rank two then D is non-split if and only if both
possible triangulations are non-critical. The use of the word maximal in the previous definition is
justified by the following lemma.

Lemma 2.26. Suppose P is a triangulation of D and fix 1 ≤ j ≤ n. Then, the induced triangu-
lation on Grj P nc is fully critical.

Proof. Let P have non-critial jumps {i1 < i2 < . . . < is}. The induced triangulation on
Grj P nc = Pij/Pij−1 is given by

0 ( Pij−1+1/Pij−1 ( · · · ( Pij−1/Pij−1 ( Pij/Pij−1 = Grj P nc.

Since Pij and Pij−1 are non-critical, there are integers k′ ≤ k such that

Dcris(Grj P nc) =
(
Dcris(D)/FilkDcris(D)

)
/
(
Dcris(D)/Filk

′
Dcris(D)

)
= Filk

′
Dcris(D)/FilkDcris(D).

Thus if k′ ≤ m ≤ k we have that

Dcris(Grj P nc)/FilmDcris(Grj P nc) = Filk
′
Dcris(D)/FilmDcris(D).

Now suppose that ij−1 < r < ij . Then,

Dcris(Pr/Pij−1) = Filk
′
Dcris(D)/FilmDcris(D)

if and only if

Dcris(Pr) = Filk
′
Dcris(D)/FilmDcris(D)⊕Dcris(D)/Filk

′
Dcris(D)

= Dcris(D)/FilmDcris(D).

Since Pr is assumed to be critical, this is impossible. �

Remark. In the case of regular weight, one could use the description given in Lemma 2.24 to
see the result above immediately.

2.3.2. Some cohomology computations of triangulated (ϕ,Γ)-modules. To end this
chapter, we are going to collect some easy calculations of the cohomology of trianguline (ϕ,Γ)-
modules. These will provide us with a reference to call on for our later study of families of (ϕ,Γ)-
modules.

Recall that the computations of Colmez and Liu (Proposition 2.13) give us completely the co-
homology of all the rank one (ϕ,Γ)-modules. Thus, in most cases, we can compute the cohomology
of a trianguline (ϕ,Γ)-module. Recall that we defined the generic characters T̂g on page 34. They
are all the characters δ : Q×p → L× which are not of the form z−j for j ≥ 0 or |z| zi for i ≥ 1.

Definition. Let D be a trianguline (ϕ,Γ)-module. We say that D is almost generic if there is
a triangulation P of D such that the associated parameter is of the form (δ1, . . . , δn) where δ1 ∈ xZ

and δj ∈ T̂g for j ≥ 2. Any parameter which satisfies this condition we call an almost generic
parameter for D and we say that D is almost generic with respect to this parameter.

Example 2.27. If D is a rank two trianguline (ϕ,Γ)-module which sits as an extension

0→ RL(δ1)→ D → RL(δ2)→ 0,

and δ2δ
−1
1 ∈ T̂g then D(δ−1

1 ) is almost generic with respect to the parameter (1, δ2δ
−1
1 ). In fact,

this is how we will most often use the definition.
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Lemma 2.28. Suppose that D is almost generic and choose an almost generic parameter (δ1, . . . , δn)
for D. Then,

dimLH
j(D) =


dimH0(RL(δ1)) if j = 0
n+ dimH0(RL(δ1)) if j = 1
0 if j = 2

Proof. By the almost generic assumption and Proposition 2.13 we have that

H0(RL(δj)) = H2(RL(δj)) = (0), j = 2, . . . , n,

and
H2(RL(δ1)) = (0).

In particular, if P is the associated triangulation then it follows by induction that
• H2(D) = (0),
• H0(RL(δ1))

∼=−→ H0(D), and
• for each i = 2, . . . , n there is a short exact sequence

0→ H1(Pi−1)→ H1(Pi)→ L→ 0.

The first two points cover the j = 0 and j = 2 computations. The case of j = 1 follows from
the third point by induction on i and using that dimLH

1(RL(δ1)) = 1 + dimLH
0(RL(δ1)) since

δ ∈ xZ. �

We also have the following computation that will be used in Chapter 4 (see Lemma 4.15).

Lemma 2.29. Suppose that D is a crystalline (ϕ,Γ)-module of rank n with distinct crystalline
eigenvalues. Choose a triangulation P for D and denote its parameter by (δ1, . . . , δn). Assume that
the lowest Hodge-Tate weight k of D is simple and choose i such that wt(δi) = k. Then, Pi is split
Pi ∼= Pi−1 ⊕RL(δi).

Proof. By Lemma 2.11, each step Pi of P is crystalline. The (ϕ,Γ)-module Pi defines an
extension class in H1

f (Pi−1(δ−1
i )). We claim that this group is zero.

It follows from the distinctness of the crystalline eigenvalues and Proposition 2.13 that if i 6= j
then

dimL Hom(ϕ,Γ)(RL(δi),RL(δj)) = (0).

In particular, dimLH
0(Pi−1(δ−1

i )) = (0). By Proposition 2.19 we deduce that the dimension
dimLH

1
f (Pi−1(δ−1

i )) is the number of negative Hodge-Tate weights of the (ϕ,Γ)-module Pi−1(δ−1
i ).

By the choice of i, there are none and thus H1
f (Pi−1(δ−1

i )) = (0). �
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CHAPTER 3

Deformation theory of (ϕ, Γ)-modules

We are now going to shift our focus towards the deformation theory of (ϕ,Γ)-modules. That is,
we fix a (ϕ,Γ)-module RL and study lifts of D to finite L-algebras (for specifics, see below). Our
purpose is to develop and study deformation problems which will give, following Chapters 4 and 5,
upper bounds on the dimensions of tangent spaces of p-adic families.

Our first goal will be to recall the setup of Mazur’s deformation theory [48]. The theory under
discussion was developed for Galois representations, but, we work instead with (ϕ,Γ)-modules. We
do not claim to give any original ideas to the setup, but we hope that the reader will enjoy a rather
self-contained exposition of the formalism. In particular, we carefully explain the definitions of
tangent spaces and we will recall the deformation conditions arising from p-adic Hodge theory.

Our second goal in this chapter is to explain two deformation conditions which occur in p-adic
families and to give estimates for the size of their deformation rings. The first such condition is the
paraboline deformation condition. This is a direct generalization of the trianguline deformations
studied in [5, Chapter 2]. However, for all the results of Chapter 5 which cannot be deduced
from loc. cit. already, the paraboline deformations will not be enough. Thus, we study an extra
deformation condition which we have coined Kisin-type. At non-critical points in a family, the
Kisin-type deformations are the same as the trianguline deformations but at critically points, it
imposes an extra condition. Putting the two conditions together, we are able to prove a theorem
contingent on the computation of Kisin-type deformations rings in the fully critical case (recall the
definition on page 40). We include two such computations in §3.3.

Throughout this chapter, we denote by ARL the category of local Artin L-algebras with residue
field L. For a ring morphism A → A′ to be a morphism in ARL it must induce the identity map
on the residue fields. The typical element of ARL to keep in mind is L[[x]]/(xn) and when n = 2
we denote this ring, called the dual numbers, by L[ε]. Since we are going to use this notation in
§3.1, let us denote1 by CL the category of complete local noetherian L-algebras with residue field
L. We restrict morphisms as before. If A ∈ CL with maximal ideal mA then A/mn

A is an element
of ARL for all n ≥ 1 and A ∼= lim

←−
A/mn

A.

3.1. Functors on ARL

In order to not multiply statements in the sequel, we feel it is necessary to make precise what
we will mean about representability. We also make an abstract definition of the Zariski tangent
space. Fix a functor X : ARL → Set.

Definition. We say that X is pro-representable if there exists an element R ∈ CL such that

HomCL(R,A) = X(A)

for all A in ARL.

1For the reader interested in the taxonomy, the letter ‘C’ stands for coefficient, as in coefficient ring. This was
the original terminology used by Mazur. The use of ‘AR’ is something I picked up from Kisin’s work.
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We could extend the functor X to a functor X0 : CL → Set by the formula

(3.1) X0(A) = lim
←−

X(A/mn
A).

In that case, X is pro-representable if and only if X0 is representable in CL, in the usual sense.
Thus, we hereafter drop the ‘pro’ part of pro-representable and just refer to functors on ARL as
being representable.

Remark. In many cases, one actually begins with a functor X0 on CL satisfying (3.1) with
X := X0

∣∣
ARL

—in this case we call X0 continuous. For example, all of the deformation functors
coming from Galois representations behave this way. However, this is not always the case. We
must restrict to only functors on ARL is because we have not considered (ϕ,Γ)-modules with
coefficients over a general element of CL.

Suppose that A,B and C are elements of ARL and f : A → C, g : B → C are morphisms.
Then, the fibered product is defined as

A×C B := {(a, b) ∈ A×B : f(a) = g(b)}
and it is2 naturally an element of ARL. Clearly, a necessary condition for X to be representable is
that the natural map

(3.2) X(A×C B)→ X(A)×X(C) X(B)

is a bijection. Moreover, Grothendieck’s representability theorem [33] says that this is sufficient
provided

• X(L) is just a single element, and
• the Zariski tangent space X(L[ε]) is a finite-dimensional L-vector space (it is a vector space

by a particular instance of (3.2)—see §3.2).
Regardless of how hard the condition (3.2) is to check, the questions we will be most interested
in are not necessarily those of representability, but rather relative representability. To define this,
suppose as well that X′ ⊂ X is a subfunctor.

Definition. We say that X′ is relatively representable if for all choices of A,B and C, the
diagram

(3.3) X′(A×C B) //

��

X′(A)×X′(C) X′(B)

��

X(A×C B) // X(A)×X(C) X(B)

is cartesian.

We have the following other criterion to be relatively representable. Note that this forces one
to check (3.2) for now a huge set of functors. In the case of deformations of (ϕ,Γ)-modules, we will
have a much short criterion (see Proposition 3.4)

Proposition 3.1. Let X′ ⊂ X be a subfunctor. Then, X′ is relatively representable if and only
if for every representable functor Y : ARL → Set and morphism Y→ X, the functor Y′ := X′×X Y
is representable.

Proof. This follows easily from the definitions of fiber products and Grothendieck’s theorem.
�

2This statement is false for CL, see [49, p. 270].
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3.2. A bestiary of deformation problems

We now specialize to the case of (ϕ,Γ)-modules. Fix L/Qp a p-adic field. Unless specified, all
(ϕ,Γ)-modules are over RL. We will use D to denote a (ϕ,Γ)-module.

Definition. Let D be a (ϕ,Γ)-module over RL. A deformation DA to A is a (ϕ,Γ)-module
over RA and an isomorphism π : DA ⊗A L ∼= D of (ϕ,Γ)-modules.

If (DA, π) and (D′A, π
′) are two deformations of D then a morphism DA

f−→ D′A is a morphism
of (ϕ,Γ)-modules over RA making the diagram

DA
f

//

π
  A

AA
AA

AA
A

D′A

π′~~}}
}}

}}
}}

D

commute. Two deformations are equivalent if there is an isomorphism between them.

If A ∈ ARL we denote by

XD(A) = {deformations DA of D to A} / ∼= .

If A → A′ is a map in ARL and DA is a deformation of D to A then DA′ := DA ⊗A A′ is a
deformation of D to A′. Thus XD defines a functor XD : ARL → Set called the deformation
functor of D. If V is an L-linear representation of GQp then we also have the formal deformation
functor XV : ARL → Set defined by Mazur. Recall that by Proposition 1.12, for any element A
of ARL the category of A-linear representations of GQp is equivalent to a subcategory of (ϕ,Γ)-
modules over A.

Lemma 3.2. The functor Drig induces a natural transformation

XV
Drig−→ XDrig(V )

which is an isomorphism of functors ARL → Set.

Proof. The only point we have to make is that if DA is a deformation of D = Drig(V ) to A
then DA arises from a Galois representation. However, if we choose a composition series for A as
a module over itself we see immediately that DA is a successive extension of D by itself. Then, by
Proposition 1.12 we have that DA corresponds to a Galois representation. �

We explain now the Zariski tangent space associated to the functor XD and then give some
examples of relatively representable subfunctors coming from p-adic Hodge theory. However, in
order to make sense of the tangent space without a representability hypothesis we need the “tangent
space hypothesis” (TL) in notation of Mazur [49, §18] (see also the proof of Proposition 23.3(a) in
loc. cit.).

Lemma 3.3. Suppose that D is a (ϕ,Γ)-module over RL. Then (3.2) holds for X = XD,
A = B = L[ε] and C = L.

Proof. THis is deduced in the course of [16]. As it is only a small part of that proof, we
include an argument for the reader here. Let A = L[ε]×L L[ε]. Let us denote the map (3.2) by

µ = (µ1, µ2) : XD(A)→ XD(L[ε])× XD(L[ε]).

Suppose that (D1, D2) is in the target of µ. We need to define the structure of (ϕ,Γ)-module on
D ⊗L A which projects onto the structures for Di. To this, consider a basis ej for D as a (ϕ,Γ)-
module—we get a basis ej ⊗ 1 for D ⊗L A and Di. If x ∈ {ϕ, γ ∈ Γ} denote M (i)

x ∈Mn(RL[ε]) the
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matrix for x acting on Di in the basis {ej ⊗ 1}j for i = 1, 2. If we know that M (1)
x ≡ M

(2)
x mod ε

for each x then the pairs (M (1)
x ,M

(2)
x ) define elements of Mn(RA) which give rise to a sufficient

(ϕ,Γ)-module structure on D ⊗L A. We claim that replacing D1 by an isomorphic deformation,
we can always achieve this. Indeed, since we have identifications D1/εD1

∼= D ∼= D2/εD2 (by
definition of fibered product) we have an element f ∈ GLn(RL) which appropriately intertwines
M

(1)
x with M

(2)
x modulo ε. But, L[ε] → L admits a section and so we can lift the element f to

replace M (1)
x by x(f)M (1)

x f−1 to define an isomorphic deformation D1 and such that D1 and D2

have the same (ϕ,Γ)-module structures modulo ε, as we claimed.
Now suppose that D̃ and D̃′ are elements of XD(A) such that µ(D̃) = µ(D̃′). Then for i = 1, 2

there exists an isomorphism fi : µi(D̃) → µi(D̃′) of (ϕ,Γ)-modules over RL[ε] such that fi ≡
id modε. After choosing a basis for D̃ and D̃′ over RA, we can see fi as an element of GLn(RL[ε]).
Since we obviously have

GLn(RA) = GLn(RL[ε])×GLn(RL) GLn(RL[ε])

we can see the element (f1, f2) as an element f ∈ GLn(RA). Indeed, they each are the identity in
GLn(RL). Then (remember we chose this basis) the element f provides us with an isomorphism
for D̃ with D̃′. �

Following this result there is now a canonical structure of L-vector space on the set XD(L[ε]).
First, if α ∈ L then the map

a+ bε 7→ a+ αbε : L[ε]→ L[ε]
morphism in ARL and thus defines by functoriality a scalar multiplication

α : XD(L[ε])→ XD(L[ε]).

This didn’t require Lemma 3.3. We have as well the morphism

(a+ bε, a+ cε) 7→ a+ (b+ c)ε : L[ε]×L L[ε] +−→ L[ε]

inside ARL. Thus by functoriality and Lemma 3.3 we have a morphism

XD(L[ε])× XD(L[ε])
(3.2)∼= XD(L[ε]×L L[ε]) +−→ XD(L[ε])

which defines addition. The two operations put the structure of vector space on XD(L[ε]). Notice
that the zero object in this vector space is the constant deformation3 D⊕D where ε acts trivially.

Definition. The Zariski tangent space to the deformation space XD of D is tD := XD(L[ε]).

Remark. Notice that if X′ ⊂ XD is a subfunctor which is relatively representable then the
natural map

X′(L[ε]×L L[ε])→ X′(L[ε])× X′(L[ε])
is still a bijection (this follows from X′ satisfying (3.3)). In particular, tX′ := X′(L[ε]) is closed
under addition and thus defines a subspace tD. We refer to it as the Zariski tangent space of the
subfunctor X′.

As with the case of Galois representations we have the realization of tD as a certain Galois
cohomology group. We denote by adD the adjoint (ϕ,Γ)-module

adD = EndRL(D) = D ⊗RL D
∨.

3Be warned, there is some ambiguity in the use of the word “split” because of this. On the one hand, we might

see eD inside H1(adD) (see below) and call it split if it is zero, i.e. the trivia deformation D⊕D. On the other hand,
it might also be “split” in the sense that it is a sum of characters. We hope that the context makes this clear.
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If D̃ is an element of tD then since L[ε] has a composition series 0 → L → L[ε] → L → 0 we see
that D̃ sits inside a short exact sequence

0→ D → D̃ → D → 0

of (ϕ,Γ)-modules over RL; the submodule is identified with εD̃ and the quotient with D̃/εD̃. This
defines isomorphisms

(3.4) tD ∼= Ext1
(ϕ,Γ)(D,D) ∼= H1(adD).

In the future, we will use both the cohomological description and the realization as extension classes
to study tD. For example, notice now that we we can reasonably expect to calculate tD using the
Euler-Poincaré-Tate characteristic formula (Proposition 2.16).

So far we have not described when we can expect to get a representable object out of the theory
of deforming (ϕ,Γ)-modules. For that we have the following criterion:

Proposition 3.4. To check that X′ ⊂ X is relatively representable it suffices to show:

(i) if f : A → A′ and an element DA ∈ XD(A) is in X′(A) then DA′ := DA ⊗A A′ ∈ X′(A′) as
well,

(ii) The case of (3.3) where C = L, and
(iii) If f : A→ A′ is injective and DA ∈ XD(A) such that DA ⊗A A′ ∈ X′(A′) then DA ∈ X′(A).

Proof. The proof of this relies on Schlessinger’s criterion and is explained in [49, §23] but see
also the proof of [5, Proposition 2.3.9]. �

We now begin now giving examples of relatively representable deformation problems. In each
case, we compute as well the corresponding Zariski tangent space.

3.2.1. Deformations arising from p-adic Hodge theory. Suppose first that D is Hodge-
Tate and let k be a Hodge-Tate weight of D. For simplicity let us assume that k has multiplicity
one. If DA is a deformation of D to A then there is some Hodge-Tate-Sen weight κ ∈ A such that
κ ≡ k mod mA. We say that DA has a constant weight k if κ = k. We then define

Xk
D(A) = {DA ∈ XD(A) : DA has constant Hodge-Tate-Sen weight k} .

Since Z ⊂ A for all A we clearly see that Xk
D satisfies the conditions of Proposition 3.4. Thus Xk

D
is a relatively representable subfunctor of XD.

To compute its Zariski tangent space, we revisit the definitions given in §2.1.2. Let D̃ ∈ Xk
D(L[ε])

be a deformation of D in the tangent space. We denote by DSen(D̃)(k) the generalized eigenspace
for the operator ΘSen with respect to the eigenvalue k (everything is seen over Qp(µp∞). Since
DSen(−)(−) is exact we have

(3.5) 0→ DSen(D)(k) → DSen(D̃)(k) → DSen(D)(k) → 0.

Then, by definition we have that D̃ has k as a Hodge-Tate-Sen weight if and only if (3.5) is split.
Thus,

tkD = ker
(
H1(adD)→ Ext1

Qp(µp∞ )[Γ]

(
DSen(D)(k), DSen(D)(k)

))
The domain of the above arrow is easily seen to be one-dimensional.

Suppose now that D is a de Rham (ϕ,Γ)-module. Then, we define XD,g ⊂ XD as the subset

XD,g(A) = {DA ∈ XD(A) : DA is de Rham} .
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Notice that this actually defines a subfunctor. Further, it is closed under direct sum and we
remarked in Lemma 2.11 that it was closed under subobjects. Similarly, if D is crystalline then we
have a subfunctor

XD,f (A) = {DA ∈ XD(A) : DA is crystalline} .
Just as before, this is also a functor which is closed under subobjects and direct sums in the
sense above. It follows from Proposition 3.4 that the functors XD,g and XD,f define relatively
representable subfunctors of XD (whenever they are defined).

In particular, we can define their Zariski tangent spaces tD,g and tD,f . It follows from Proposi-
tion 2.17 that we have isomorphisms

tD,g ∼= H1
g (adD), and

tD,f ∼= H1
f (adD),

at least when they are defined. The following computes the exact size of these tangent spaces.

Proposition 3.5. Suppose that D is crystalline with Hodge-Tate weights k1, . . . , kn (possibly
with multiplicty). Then,

dimL tD,f = dimL End(ϕ,Γ)(D) + # {(i, j) : ki < kj}
and

dimL tD,g = dim tD,f + dimDcris(D)ϕ=p + dimDcris(D)ϕ=p−1
.

Proof. All of these follow from Proposition 2.19 applied to adD = D ⊗RL D∨. �

The case we will most often is the following corollary.

Corollary 3.6. If D is crystalline as a (ϕ,Γ)-module with distinct Hodge-Tate weights then

dim tD,f = dimL End(ϕ,Γ)(D) +
n(n− 1)

2
.

Proof. Since the Hodge-Tate weights are distinct exactly
(
n
2

)
of the differences ki− kj will be

negative. Thus, we conclude from Proposition 3.5. �

3.2.2. Paraboline deformations. We now go on to explain the theory of paraboline defor-
mations. Recall in §2.3 we described what it means to have a parabolization of a (ϕ,Γ)-module
DA over an element A in ARL. Let D be a (ϕ,Γ)-module over RL and P a parabolization of D.

Definition. If DA is a deformation of D to A then we say that DA is a paraboline deformation
with respect to P provided there is a parabolization PA of DA such that the isomorphism π : DA⊗A
L→ D induces an isomorphism PA,i ⊗A L ∼= Pi for each i.

The paraboline deformations define a functor XD,P : ARL → Set on points by

XD,P (A) = {DA ∈ XD(A) : DA is a paraboline deformation with respect to P} .
Note that it is a functor. However, it is not clear (or true in general) that it is a subfunctor. Even
in the case that it is a subfunctor, there is still work to show that it is relatively representable.
These are our two mains goals, but first we give some examples.

Example 3.7. Let P to be the trivial parabolization 0 ( D. Then we clearly have that
XD,P = XD.

Example 3.8. Let P be a triangulation. The study of the deformation functors XD,P was
one of the main topics of [5]. The authors of loc. cit. showed that trianguline deformations
naturally appear infinitesimally in p-adic families. We will show in Theorem 4.13 and §4.3.1 that
p-adic families carry large open loci of trianguline deformations, recovering the Belläıche-Chenevier
result.
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The more general paraboline deformations, and many of the computations below, are discussed
in [16]. However we include the proofs of many results since we are implicitly working towards
critical triangulations and thus our hypotheses are slightly different. Before continuing, we need to
set up some notation.

Given a parabolization P of length s, we set

EndP (D) = {f ∈ EndRL(D) : f(Pj) ⊂ Pj for j = 1, . . . , s} .
Then, this is a (ϕ,Γ)-submodule and a direct summand of EndRL(D) as an RL-module. Note that

H0(EndP (D)) =
{
f ∈ End(ϕ,Γ)(D) : f(Pj) ⊂ Pj for j = 1, . . . , s

}
.

We will always use the notation Grj P to denote the associated graded Pj/Pj−1. The answer to
the question of XD,P being a subfunctor is given by the following result (see [5, Proposition 2.3.6]
as well).

Lemma 3.9. Assume that Hom(ϕ,Γ)(Grj P,D/Pj) = (0) for j = 1, . . . , s. Then, XD,P is a
subfunctor of XD.

Proof. By induction on the length of P , we must show that if DA is a paraboline deformation
with respect to P , with parabolization PA, then PA,1 is uniquely determined as a (ϕ,Γ)-submodule
of DA. Let m := rankP1 and suppose that P̃1 is a rank m saturated (ϕ,Γ)-submodule of DA

deforming P1. We claim that
Hom(ϕ,Γ)(P̃1, DA/PA,1) = (0).

If so, we see that P̃1 ⊂ PA,1. Since each of P̃1 and PA,1 are saturated inside DA of the same rank,
we are done.

To prove the claim, we begin with the hypothesis that Hom(ϕ,Γ)(P1, D/P1) = (0). Since
DA/PA,1 is a successive extension ofD/P1 by itself we see easily, by the left exactness of Hom(ϕ,Γ)(P1,−),
that

Hom(ϕ,Γ)(P1, DA/PA,1) = (0).

Now apply the same argument to the first coordinate: P̃1 is a successive extension of P1 by itself
and so left-exactness of Hom(ϕ,Γ)(−, DA/PA,1) finishes the claim. �

Example 3.10. Assume that P is a triangulation with parameter (δ1, . . . , δn) such that δ−1
i δj /∈

Ŝ+ if i < j (this is the hypothesis in [5, Proposition 2.3.6]). In that case, if P ′ is any subparabo-
lization of P then the hypothesis of Lemma 3.9 is true for P ′. For example, we could apply this to
P ′ = P nc.

Remark. The condition in Lemma 3.9 is obviously necessary. Indeed, suppose that D =
RL(δ)⊕2 with basis e1 and e2 giving a triangulation 0 ( RLe1 ( D. Then, if we consider the
constant deformation D ⊗L L[ε], we have many triangulations deforming the one downstairs. For
example, we have the two 0 ( RL[ε](e1) ( DL[ε] and 0 ( RL[ε](e1 + εe2) ( DL[ε].

We now moves towards the relative representability of XD,P . Our method of proving that XD,P

is relatively representable is to make use of the criterion in Proposition 3.4. In order to explain
the validity of point (iii) in loc. cit. however, we have to make a short detour into a discussion
of irreducible (ϕ,Γ)-modules. The final proof of relative representability will be given in Theorem
3.25.

Recall that by Proposition 1.7 a finitely generated module D over RL is free if and only if it is
torsion-free. We will use this constantly without further comment.

Definition. A (ϕ,Γ)-module D over RL is irreducible if the only proper, saturated, submodule
is the zero module.
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Lemma 3.11. Let D be a (ϕ,Γ)-module over RL. The following are equivalent:
(a) D is irreducible;
(b) for every submodule D0 ⊂ D either D0 = (0) or D/D0 is a torsion (ϕ,Γ)-module;
(c) for every submodule D0 ⊂ D either D0 = (0) or there exists an n >> 0 such that tnD ⊂ D0.

Proof. The equivalence of (a) and (b) is the definition of irreducible and saturated. The
equivalence of (b) and (c) follows from Corollary 2.8. �

Throughout the rest of the section we use D to denote a (ϕ,Γ)-module and we will prefer to
use π to denote an irreducible (ϕ,Γ)-module. We have the following version of Schur’s lemma.

Lemma 3.12. Suppose that π and π′ are two irreducible (ϕ,Γ)-modules. If α : π → π′ is a
morphism then either α = 0 or α is injective and α[1/t] is an isomorphism.

Proof. If α is not injective then kerα is a non-zero saturated submodule of π. By the ir-
reduciblity of π we deduce that α = 0. Now suppose that α is injective. In that case, π is a
(ϕ,Γ)-module of π′ and the irreducibility of π′ implies that π/π′ is t-torsion by Lemma 3.11 and
the result now follows. �

Lemma 3.13. Suppose that π is irreducible and π′ ⊂ π is any submodule. Then, π′ is also
irreducible.

Proof. If π′′ ⊂ π′ then we have π′/π′′ ⊂ π/π′′. As π is irreducible, π/π′′ is pure t-torsion and
thus so is π′/π′′. So, the result follows from Lemma 3.11. �

Example 3.14. If δ : Q×p → L× be a continuous character then the rank one (ϕ,Γ)-module
π = RL(δ) is irreducible. Indeed, it follows from Proposition 2.7 that the only submodules are of
the form trRL(δ) with r ≥ 0.

The previous results and the rank one example leads us to give the following equivalence relation
on irreducible modules.

Definition. Let π and π′ be irreducible (ϕ,Γ)-modules. We say that π and π′ are equivalent,
and write π ∼ π′, if the (ϕ,Γ)-modules π[1/t] and π′[1/t] over RL[1/t] are isomorphic.

Notice that this is clearly an equivalence relation on the set of irreducible (ϕ,Γ)-modules. The
RL-rank is constant on each equivalence class.

Lemma 3.15. Given two irreducible (ϕ,Γ)-modules π and π, we have π ∼ π′ if and only if there
exists integers r ≥ s ∈ Z and inclusions trπ ↪→ π′ ↪→ tsπ whose composition trπ ↪→ tsπ is the
identity.

Proof. This follows immediately from the definition and the fact that π (resp. π′) is a finitely
generated RL-submodule of π[1/t] (resp. π′[1/t]). �

Lemma 3.16. Suppose that π ⊂ D is a submodule. Then, π is irreducible if and only if its
saturation πsat is irreducible. In particular, π is equivalent to an irreducible, saturated, submodule
of D.

Proof. If πsat is irreducible then so is π by Lemma 3.13. Suppose that π is irreducible and
that π′ ⊂ πsat is a proper, saturated, submodule. By definition of the saturation, we can choose
an r >> 0 such that trπsat ⊂ π. Since trπsat is irreducible (by Lemma 3.13 again) it follows that
trπ′ = (0) and thus π′ = (0). �

Definition. Let D be a (ϕ,Γ)-module. We say that an irreducible (ϕ,Γ)-module π is an
irreducible constituent of D if there exists a (ϕ,Γ)-submodule D′ ⊂ D and a surjection D′ � π.
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Notice that we don’t a priori require D′ to be a saturated submodule.

Proposition 3.17. The following are equivalent.
(a) π is an irreducible constituent of D.
(b) There exists a saturated submodule D′ ⊂ D and a surjection D′ � π′ for some irreducible

(ϕ,Γ)-module π′ which is equivalent to π.
(c) There exists a quotient D � D′′ of (ϕ,Γ)-modules such that π ↪→ D′′.
(d) There exists a quotient D � D′′ of (ϕ,Γ)-modules and an irreducible submodule π′ ↪→ D′′

which is saturated and π′ is equivalent to π.

Proof. Starting at the bottom, (d) is equivalent to (c) by Lemma 3.16 (take π′ to be the
saturation of π inside D′′). Moving to the top, obviously (b) implies (a). To see the reverse
implication we choose D′ ⊂ D with π being a quotient of D′. Consider (D′)sat ⊂ D. Notice that
the map D′ → π defines a map (D′)sat → π[1/t]. Since (D′)sat is a (ϕ,Γ)-module, the image π′ is
a (ϕ,Γ)-module necessarily equivalent to π by Lemma 3.15.

It remains to prove (b) is equivalent to (d). First assume (b) and let D′ ⊂ D be a saturated
submodule such that π′ is a quotient D′. We set D′0 := ker (D′ → π′). Since D′0 is saturated inside
D′ and D′ is saturated inside D′0, the quotient D′′ := D/D′0 is a (ϕ,Γ)-module. Moreover,

π′ ∼= D′/D′0 ⊂ D/D′0
is saturated, as the quotient is D/D′. Thus π′ is a saturated submodule of the quotient D′′ of D,
which shows (d).

For the reverse, let us choose D′′ and π′ as given in (d). Write D′ for

D′ := ker
(
D → D′′/π

)
.

Since π′ is saturated inside D′′ we have that D′ is a (ϕ,Γ)-submodule of D and thus free. We write
as well D′0 := ker (D → D′′). Then,

π′ ∼= D′/D′0 ↪→ D/D′0
∼= D′′.

Thus π′ is a quotient of the saturated submodule D′, which shows (b). �

Remark. We note that while conditions (b) and (d) seem more natural, for flexibility and
clarity in our arguments we will often use the non-saturated versions (a) and (c) above.

Example 3.18. The irreducible constituents of RL are the (ϕ,Γ)-modules of the form trRL
with r ≥ 0. Thus, irreducible consituents are not unique, even for an irreducible (ϕ,Γ)-module.

We now consider the following situation. Let Π = {π1, . . . , πs} be a list of irreducible (ϕ,Γ)-
modules. If πi = RL(δi) is a character for each i then we will write Π = {δ1, . . . , δs}.

Definition. A (ϕ,Γ)-module D is of type Π if for every irreducible constituent π of D there
exists a πi ∈ Π such that π ∼ πi.

Example 3.19. Let Π = {δ}. The rank one modules of type Π are all the modules RL(zrδ)
with r ∈ Z.

Proposition 3.20. Let D be a (ϕ,Γ)-module.
(a) If D1 and D2 are submodules of D of type Π then so is D1 +D2 ⊂ D.
(b) If f : D → E is a map of (ϕ,Γ)-modules and D′ ⊂ D is of type Π then so is E′ = f(D′).
(c) If D has type Π and D′ ⊂ D then D′ has type Π as well. If D/D′ is torsion then the

converse holds.
(d) If 0 → D′ → D → D′′ → 0 is a short exact sequence and D′ and D′′ are each of type Π

then so is D.
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Proof. We first prove (a). Write D3 for the sum D1 +D2. Note that it is still a (ϕ,Γ)-module
since it is finitely generated and torsion-free (being a submodule of D). Suppose that π is an
irreducible constituent of D3. Choose a (ϕ,Γ)-submodule N3 ⊂ D3 and a surjection α : N3 � π.
Consider N1 := N3 ∩ D1 ⊂ D1. Since π is irreducible, the image α(N1) ⊂ π is either zero or
an irreducible module π′ ∼ π. If we are in the latter case, then by definition π′ is an irreducible
constituent of D1 and thus π′ ∼ πi for some i, since D1 is of type Π. Thus π ∼ πi.

Now suppose that α(N1) = (0). If that is the case then we consider a sequence of generalized
(ϕ,Γ)-modules

E1 := N3/N1
∼= N3 +D1/D1 ↪→ D/D1

∼= D2/D2 ∩D1 =: E2.

Recall we use the notation (−)tor to denote RL-torsion submodules. By assumption, π is a quotient
of the submodule E1 ⊂ E2. Moreover, though neither of these are necessarily torsion-free we do
know that α(E1,tor) = (0) since π is torsion-free. Thus π is a quotient of E1,free. Moreover,
E1,tor = E2,tor ∩ E1 and thus we have a natural inclusion E1,free ⊂ E2,free. Thus, π is a quotient
of a (ϕ,Γ)-submodule E1,free of the (ϕ,Γ)-module E2,free. Since E2,free is itself a quotient of the
(ϕ,Γ)-module D2 we have the π is an irreducible constituent of D2. Since D2 is of type π, there
exists an i such that π ∼ πi.

Dispensing with (b) is easy. Let E′ := f(D′) and suppose that π is an irreducible submodule
of a quotient E′ � E′′. Then, π is an irreducible submodule of a quotient D′ � E′ � E′′ and thus
π ∼ πi for some i, since D′ has type Π.

Consider part (c). Suppose that π is an irreducible constituent of D′. Thus there is a submodule
D′′ ⊂ D′ such that π is a quotient of D′′. Since D′′ is also a submodule of D and D is of type Π we
have that π ∼ πi for some i. As π was arbitrary, D′ has type Π. In the case that D/D′ is torsion,
(D′)sat = D and there exists an r >> 0 such that trD ⊂ D′. By the first implication of this part,
trD is of type Π. Then, if π is a constituent of D we get that trπ is a constituent of trD. Since
π ∼ trπ the result follows from trD being of type Π.

Part (d) remains. Suppose that π is a constituent of D and choose Q ⊂ D such that π is a
quotient of Q. If the natural map β : Q∩D′ → π is non-zero then π ∼ πi for some i as D′ has type
Π. If β is zero then we consider the free module

Q/Q ∩D′ ∼= Q+D′/D′ ⊂ D/D′ ∼= D′′.

Since π is a quotient of the submodule, it is a constintuent of D′′ and so again we get that π ∼ πi
for some i. �

We now move on to give our main examples.

Definition. Let Π = {π1, . . . , πs} be a list of irreducible (ϕ,Γ)-modules and let D be any
(ϕ,Γ)-module. We define DΠ to be the largest (ϕ,Γ)-submodule of D such that DΠ is of type Π.

Lemma 3.21. The association FΠ(D) := DΠ defines a left exact functor on (ϕ,Γ)-modules over
RL.

Proof. First, there exists a largest submodule DΠ by part (a) above. Thus FΠ is well-defined.
Second, FΠ is a functor by part (b) above. Indeed, if f : D → E is a map then f(DΠ) is of type Π
and thus f(DΠ) ⊂ EΠ, by maximality of EΠ inside E.

It remains to check the exactness. Suppose that we have a SES 0→ D′ → D
g−→ D′′ → 0 and

consider the induced sequence of maps

0→ D′Π → DΠ
g−→ D′′Π.
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It is obviously exact on the left. To show that it is exact in the middle we have to show that
ker(g

∣∣
DΠ

) ⊂ D′Π (the other containment being trivial). However, ker(g
∣∣
DΠ

) ⊂ DΠ ∩ D′ is a sub-
module of D′ of type Π (by part (c) above) and thus this follows from maximality. �

Throughout the rest of this subsction, we use Π to denote a list of irreducible (ϕ,Γ)-modules
Π = {π1, . . . , πs}.

Proposition 3.22. Let D be a (ϕ,Γ)-module. Then DΠ ⊂ D is saturated as a RL-module.

Proof. Let D′ := (DΠ)sat. Since D′/DΠ is torsion, D′ is of type Π by Proposition 3.20(c). By
the maximaility of DΠ we deduce that D′ = DΠ. �

Now that we have gotten through our preliminaries on irreducible (ϕ,Γ)-modules and the notion
of having a type, we will work to prove the relative representability of paraboline deformation
functors.

Proposition 3.23. Suppose that π is an irreducible (ϕ,Γ)-module. Then,

FΠ(π) =

{
π if π ∼ π′ for some π′ ∈ Π
0 othwerise

Proof. By Proposition 3.22 we have that FΠ(π) is saturated inside π. As π is irreducible, we
have that either FΠ(π) is zero or π itself. Further, since π is an irreducible constituent of itself, we
clearly have π is of type Π if and only if π is equivalent to a member of Π. �

Example 3.24. Recall that Ŝ+ =
{
z−j : j ≥ 0

}
. F{η}(RL(δ)) = RL(δ) if and only if (δη−1)±1 ∈

Ŝ+.

Let D be a (ϕ,Γ)-module. If D is irreducible then it is of type {D}. Otherwise, there exists
a non-zero saturated submodule D0 ⊂ D. By induction on rankRL D we have that D0 contains a
non-zero irreducible submodule π. Furthermore, by Lemma 3.16 we can assume that π is saturated
inside D0, and thus in D as well. By induction on the rank of D again we deduce that there exists
a finite list ΠD = {π1, . . . , πs} of irreducible (ϕ,Γ)-modules such that D is a successive extension of
πi by πj . Notice that the individuals members of the list are neither unique nor is the ordering of
a given list of irreducible constituents. However, since D is of type ΠD any two ways of generating
the list ΠD (in an apparent minimal sense) are the same up to reordering and ∼. Finally, notice
that if D has the structure of a module over a commutative ring A then FΠ(D) inherits a natural
A-module structure as well.

Theorem 3.25. Let D be a trianguline (ϕ,Γ)-module with triangulation P ′ and parameter
(δ1, . . . , δn) such that if i 6= j then δ−1

i δj /∈ Ŝ+. Let P be any subparabolization of P ′. Then,

• Hom(ϕ,Γ)(Grj P,D/Pj) = (0) for j = 1, . . . , s and
• XD,P is a relatively representable subfunctor of XD.

Proof. The hypothesis on the parameter δi implies that

Hom(ϕ,Γ)(RL(δi),RL(δj)) = (0)

if i 6= j. It is easy to check by induction and dévissage that the first point is true. In particular,
Lemma 3.9 implies that XD,P is a subfunctor of XD. In order to prove that XD,P is relatively
representable we will use Proposition 3.4. The first condition is clear: if DA ∈ XD,P (A) then
PA ⊗A A′ is a parabolization of DA′ deforming P .
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The second condition is explained in [16, Proposition 3.4] but we include the proof here for
convenience. Choose a basis B adapted to the triangulation P ′. We have to show that if A,B ∈
ARL then the diagram

XD,P (A×L B) //

��

XD,P (A)× XD,P (B)

��

XD(A×L B) // XD(A)× XD(B)

is cartesian (recall that XD(L) = {D} is a point). So, suppose that DA×LB is a deformation of D
such that DA and DB are both paraboline with respect to P . If S is any of the rings A ×L B, A
or B then DS

∼= D ⊗L S as a RS-module and so we view B simultaneously as a RS-basis of DS .
Thus we may consider the matrices {[ϕDS ]B, [γDS ]B}. We use ∗ to denote either ϕ or γ. We have
that [∗DA×LB ]B = ([∗DA ]B, [∗DB ]B) inside

(3.6) GLn(RA×LB) ∼= GLn(RA)×GLn(RL) GLn(RB).

Denote by R(S) (this is the notation of loc. cit.) the elements of GLn(RS) which are block upper
triangular with block sizes given in order by the parabolization P . It is evident from (3.6) that
R(A×LB) = R(A)×R(L)R(B). Denote as well R1(S) = ker(R(S)→ R(L)). Now, what we are told
(by asking that DA and DB are paraboline) is that there are elements rA ∈ R1(A) and rB ∈ R1(B)
such that [∗DA ]rAB and [∗DB ]rBB are in R(A)× R(B). Since rA mod mA = rB mod mB (both are
the identity) we get that the pair (rA, rB) defines an element of rA×LB ∈ R1(A×L B). Moreover,
we have that [∗DA×LB ]rA×LBB ∈ R(A×L B) and thus DA×LB is a paraboline deformation.

We now move on to the third condition of Proposition 3.4. We need to assume that A ⊂ A′,
that DA is a deformation of D to A and that DA′ := DA ⊗A A′ is a paraboline deformation of
D with respect to P . Our conclusion should be that DA was paraboline already. It suffices by
induction on the rank of D to just treat the case of a single step 0 ( Pi ( D. Consider the
set Π = {δ1, . . . , δi} of irreducible constituents for Pi. By our assumption on the parameter and
Example 3.24 we have that for each j = i+ 1, . . . , n that FΠ(δj) = (0). Thus, by the left exactness
of FΠ we have FΠ(D/Pi) = (0) and Pi = FΠ(Pi) = FΠ(D).

Now consider the deformation DA and its constant scalar extension DA′ = DA ⊗A A′. By
assumption we have that there exists a saturated (ϕ,Γ)-submodule Pi,A′ ⊂ DA′ deforming Pi. By
the left exactness of FΠ we have that FΠ(DA′/Pi,A′) = (0) and Pi,A′ = FΠ(Pi,A′) = FΠ(DA′) is free
over RA′ . Furthermore, if M is any finite length A-module then DA ⊗AM is a (ϕ,Γ)-module over
RL (as M is a vector space over L) and

(3.7) rankRL FΠ(DA ⊗AM) ≤ i lenA(M).

This follows from considering a composition series for M as an A-module and the left exactness of
FΠ. Consider the short exact sequence

0→ FΠ(DA)→ FΠ(DA′)→ FΠ(DA ⊗A A′/A).

The middle term is a (ϕ,Γ)-module of rank exactly rankRL Pi,A′ = i lenAA′ and the final term has
rank at most i(lenAA′− lenAA) by (3.7). Thus FΠ(DA) has rank at least i lenAA. Applying (3.7)
for an upper bound, we get that FΠ(DA) is a (ϕ,Γ)-module over RL of rank i lenAA.

Next, Proposition 3.22 implies that since FΠ(DA) is saturated as aRL-module inside DA. Thus,
the same must be true of the image of FΠ(DA) ⊗A L inside DA ⊗A L = D. Indeed, DA/FΠ(DA)
is a successive extension of coker(FΠ(DA) ⊗A L → D) by itself and taking torsion is left exact.
Since rankRL FΠ(DA)⊗A L = i we deduce that the image of FΠ(DA)⊗A L inside D is a saturated
(ϕ,Γ)-submodule of rank i and type Π; it follows from this that the natural map FΠ(DA) → Pi
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is surjective. It must also be injective as the two objects have the same rank over RL. Thus,
FΠ(DA)⊗A L ∼= Pi. Finally, we consider the exact sequence

0→ FΠ(DA)→ DA → DA/FΠ(DA)→ 0.

As the sequence remains exact over the residue field L (by what we just said) we deduce that

TorA1 (DA/FΠ(DA), L) = TorA1 (FΠ(DA), L) = (0)

and everything in sight is free over A. Finally by [5, Lemma 2.2.3(ii)] we deduce that FΠ(DA) is a
(ϕ,Γ)-module over RA (as it free of finite rank over RL and free over A). Thus DA is a paraboline
deformation of D with respect to Pi ⊂ D. �

Corollary 3.26. Suppose that D is a crystalline (ϕ,Γ)-module with distinct crystalline eigen-
values. Then, for any parabolization P of D we have that XD,P ⊂ XD is a relatively representable
subfunctor.

Proof. By Proposition 2.21 any parabolization of a crystalline (ϕ,Γ)-module can be realized
as a subparabolization of a triangulation. Thus Theorem 3.25 implies that it is enough to show
that for any triangulation P ′ with parameter (δ1, . . . , δn), we have δiδ−1

j /∈ Ŝ+.
Let P ′ be any triangulation of D. The dictionary of Proposition 2.21 tells us that the parameter

is given by δi = z−si unr(φi) for some orderings (φ1, . . . , φn) of the crystalline eigenvalues and
(s1, . . . , sn) of the Hodge-Tate weights. Thus δiδ−1

j = zsj−si unr(φiφ−1
j ) /∈ Ŝ+ unless φi = φj . �

Remark. If P+ ⊂ D is a saturated (ϕ,Γ)-submodule such that FΠP+ (D/P+) = (0) then the
same proof will show that XD,P+ → XD satisfies Proposition 3.4 as well.

We now have, under a regularity hypothesis, a tangent space tD,P ⊂ tD whose dimension we
will compute. Recall that we previously defined the RL-module EndP (D). Choosing a basis of D,
adapated to the filtration P , we realize any element of EndP (D) as a block upper triangular matrix
in Mn(RL) (the blocks being the successive ranks of each step Pi in P ). In particular, we see easily
then that

(3.8) rankRL EndP (D) =
∑
i≤j

ninj , ni := rankRL Pi.

On the other hand, under the identification(s) (3.4) one has (see [16, Proposition 3.6]) that there
is a commuting diagram

tD
∼= // H1(EndRL(D))

tD,P ∼=
//

OO

H1(EndP (D))

OO
.

This gives us the following formula.

Proposition 3.27. Assume that D is a crystalline (ϕ,Γ)-module with distinct crystalline eigen-
values. Let P be a parabolization of D and let ni = rankRL Pi. Then,

dimL tD,P =
∑
i≤j

ninj + dimL End(ϕ,Γ)(D) + dimLH
2(EndP (D)).

Proof. Notice that if we replace End(ϕ,Γ)(D) by End(ϕ,Γ),P (D) then this is a consequence of
the Euler-Poincaré-Tate characteristic formula, Proposition 2.16 and (3.8). Thus, it suffices to show
that End(ϕ,Γ),P (D) = End(ϕ,Γ)(D), i.e. we need to prove that if f : D → D is (ϕ,Γ)-equivariant
then f(Pj) ⊂ Pj for all j. We prove this by induction on j. Notice that by assumption on D we
have that Hom(ϕ,Γ)(Grj P,D/Pj) = (0).
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If j = 1 then by hypothesis we have that composite

P1

f
∣∣
P1−→ D → D/P1

must be the zero map. Thus f(P1) ⊂ P1. Suppose that we have shown the claim for j − 1. In that
case, f necessarily defines a well-define (ϕ,Γ)-equivariant map f : D/Pj−1 → D/Pj−1. Just as in
the previous case, the composite

Grj P
f
∣∣
Grj P−→ D/Pj−1 � D/Pj

must be the zero map and thus f(Grj P ) ⊂ Grj P , which implies that f(Pj) ⊂ Pj . �

As an example of the vanishing of the final term in the above summation, we have the following
result.

Proposition 3.28. Suppose that D is a crystalline (ϕ,Γ)-module such that for any two eigen-
values φ and φ′ of ϕ acting on Dcris(D) we have φ 6= pφ′. Then, for any parabolization P of D we
have H2(EndP (D)) = (0).

Proof. Since EndP (D) ⊂ EndRL(D) is a direct summand as a RL-module, the crystalline
eigenvalues of EndP (D) are all of the form φ−1φ′ for φ and φ′ crystalline eigenvalues of Dcris(D).

Choose any triangulation of D (it is crystalline, so there are many) and let its parameter be
(δ1, . . . , δn). Then, the hypothesis on the eigenvalues implies that H2(zrδiδ−1

j ) = (0) for all i, j and
r ∈ Z. Since EndRL(D) is trianguline with a parameter (δiδ−1

j )i,j , EndP (D) is trianguline as well,
with a parameter of the form (zrijδiδ−1

j ) with rij ∈ Z. In any case, the first half of this paragraph
implies that H2(EndP (D)) = (0). �

We finish our discussion of paraboline deformations by pushing towards what more one can say
about the interaction between paraboline deformations and other deformation functors. Here, for
the first time in this section, we see that the role that non-criticality plays.

Proposition 3.29 ([16, Proposition 3.13]). Suppose that D is a crystalline (ϕ,Γ)-module over
RL. Suppose, moreover, that P is a non-critical parabolization of D and that Hom(ϕ,Γ)(D/Pj ,Grj P ) =
(0) for all j. Then, XD,f is a subfunctor of XD,P .

We will come back to this point (see Theorem 3.38) but let us pause here and return to
Proposition 3.27. Notice then that the term End(ϕ,Γ)(D) appearing in tD,P also appears in the
computation of tD,f (see Proposition 3.5). In particular, the quotient tD,P /tD,f couldn’t care
less about the decomposability of D. On the other hand, paraboline deformations also interact
with naked deformation spaces. Suppose that DA ∈ XD,P (A) is a paraboline deformation with
parabolization PA. We can then consider the associated gradeds Grj PA. Writing this down is
functorial in A and so we have a natural transformation

(3.9) XD,P →
s∏
j=1

XGrj P .

Under some weak hypothesis, we will be able to exploit this map to reduce computations on D to
computations on each associated graded.

Proposition 3.30 ([16, Proposition 3.7]). Suppose that

H2(HomRL(D/Pj ,Grj P )) = (0)

for j = 1, . . . , s. Then, for each A ∈ ARL we have that (3.9) is surjective: XD,P (A)�
∏s
j=1 XGrj P (A).
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In the situation above, we say that (3.9) is surjective on points. We end this section with just
an example of when the hypothesis is satisfied.

Example 3.31. Suppose that D is crystalline, with regular Hodge-Tate weights and such that
φ′φ−1 6= p for each pair of distinct eigenvalues φ and φ′ of ϕ acting on Dcris(D). Let P be any
triangulation of D with parameter (δ1, . . . , δn). We claim that the hypotheses of Proposition 3.30
holds.

For each j, we have
HomRL(D/Pj ,Grj P ) = (D/Pj)∨(δj).

Since (D/Pj)∨ has a triangulation with parameter (δ−1
j−1, . . . , δ

−1
1 ), and H2 is right exact, it suffices

now to show that δ−1
i δj /∈ Ŝ− for i = 1, . . . , j − 1. However, if we have

zwt(δi)−wt(δj) unr(φ−1
i φj) = δ−1

i δj = zm |z|
with m ≥ 1 then we see right away that m = wt(δi) − wt(δj) and φi = pφj , contradicting our
assumption on the eigenvalues.

3.2.3. Deformations of Kisin-type. We’ve seen deformations arising from p-adic Hodge
theory and deformations arising from the structure of (ϕ,Γ)-modules associated to Galois rep-
resentations. The latter actually originally arose in [5] partly inspired by deformation theoretic
computations of Kisin [43]. We now revisit the origins of this connection with a view towards
the applications in Chapter 5. In particular, we will produce upper bounds in §3.2.4 for certain
deformation rings contingent on computing the Kisin-type deformation rings described below.

For the moment, let D be a crystalline (ϕ,Γ)-module over RL and assume that 0 is its least
Hodge-Tate weight, with multiplicity one. Assume as well that φ is a crystalline eigenvalue of ϕ
acting on Dcris(D). We define a deformation problem

X
φ
D =

{
DA ∈ XD(A) : D+

cris(DA)ϕ=φA is free of rank one for some φA ≡ φ mod mA

}
.

We could also work as in a slightly different situation by considering the subfunctor X
φ,0
D :=

X
φ
D ×XD X0

D ⊂ X
φ
D parameterizing deformations with constant Hodge-Tate-Sen weight zero.

Lemma 3.32 ([43, Proposition 8.13]). Assume that dimLD
+
cris(D)ϕ=φ = 1. Then, X

φ
D → XD is

a relatively representable subfunctor of XD.

We hereafter denote by t
φ
D the Zariski tangent space to the functor X

φ
D. The following lemma

is clear but is going to be important for us.

Lemma 3.33. Suppose that φ is a simple eigenvalue for ϕ acting on Dcris(D). Assume as well
that D = D0 ⊕D1 with Dcris(D0)ϕ=φ 6= (0). Then, the natural projection tD → tD0 maps t

φ
D into

t
φ
D0

.

Proof. Let D̃ ∈ t
φ
D and choose φ̃ such that D+

cris(D̃)ϕ=eφ is free of rank one over A. We use an
explicit description of the natural map

Ext1
(ϕ,Γ)(D,D) = tD → tD0 = Ext1

(ϕ,Γ)(D0, D0)

in terms of extension classes. To be precise, the element of tD0 which D̃ maps to is D̃0 := ker(D̃ →
D1)/D1.

Since D̃ ∈ t
φ
D, we know that there exists an embedding RL[ε](unr(φ̃)) ↪→ D̃. By the multiplicity

one of φ in Dcris(D), it induces an embedding RL[ε](unr(φ̃)) ↪→ D̃0. By the left exactness of Dcris

we have

(3.10) Dcris(RL[ε](unr(φ̃))) ⊂ Dcris(D̃0)ϕ=eφ.
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On the other hand, dimLDcris(D̃0)ϕ=eφ ≤ 2 because, again, φ is a simple eigenvalue. Thus (3.10) is
an equality and Dcris(D̃0)ϕ=eφ is free of rank one. �

Remark. Under the notation above, we have as well that the projection tD → tD0 maps t
φ,0
D

into t
φ
D0

. However, note that 0 need not be a Hodge-Tate weight of D0 and so one must be careful
not to include that condition in the notation.

We now switch our focus to a more general setting. Let D be a (ϕ,Γ)-module over RL and we
assume that it is crystalline with regular Hodge-Tate weights k1 < k2 < . . . < kn (though we no
longer assume that k1 = 0). If DA is a deformation of D to A then we denote by κ1, . . . , κn ∈ A
the Hodge-Tate-Sen weights of DA, labeled so that κi ≡ ki mod mA. Since mA is nilpotent there is
a unique character Q×p → A× which we denote by as well by κi whose weight is −κi and which is
trivial at p. If DA is a deformation then DA(κ1) is a deformation of D(k1) and which has zero as
a Hodge-Tate weight (this notation was first introduced in Example 2.4).

Recall we defined refinements in §2.3. We fix a refinement R of D corresponding to an ordering
(φ1, . . . , φn) of crystalline eigenvalues. Since D has distinct crystalline eigenvalues, we know that
such an ordering corresponds exactly to a triangulation of D. Define Fi := p−kiφi ∈ L×. Then,
for each i = 1, . . . , n we have that the product F1 · · ·Fi is a crystalline eigenvalue for ϕ acting on
∧iD(k1 + · · ·+ ki). This is a (ϕ,Γ)-module with lowest Hodge-Tate weight 0 and so we can apply
our previous discussion.

Definition. We say that a deformation DA of D to A is of Kisin-type (with respect to R) if
there exists elements Φ1, . . . ,Φn ∈ A× such that Φi ≡ Fi mod mA for all i = 1, . . . , n and one has

D+
cris(∧

iDA(κ1 + · · ·+ κi))ϕ=Φ1···Φi

is free of rank one over A. We let Xh
D,R denote the formal deformation functor of Kisin type.

The h is in homage to Kisin’s original functor. In fact, the above is the natural generalization
we mentioned at the beginning of this subsection. We have the following positive result regarding
the representability of the above functor.

Proposition 3.34. Assume that for i = 1, . . . , n the eigenvalue φ1 · · ·φi is multplicity one on
Dcris(∧iD). Then Xh

D,R is a relatively representable subfunctor of XD and

(3.11) thD,R = ker

(
tD →

n⊕
i=1

t0∧iD(k1+···+ki)/t
F1···Fi,0
∧iD(k1+···+ki)

)
.

Proof. Under the assumption that φ1 · · ·φi is a simple eigenvalue on D+
cris(∧iD(k1 + · · ·+ki)),

we know by Lemma 3.32 that each containment

X
F1···Fi,0
∧iD(k1+···+ki) ⊂ X0

∧iD(k1+···+ki)

defines a relatively representable subfunctor. Then, Xh
D,R is defined as a fibered product

Xh
D,R

��

// XD

��∏n
i=1 X

F1···Fi,0
∧iD(k1+···+ki)

//
∏n
i=1 X0

∧iD(k1+···+ki)

where the right hand vertical map is the map

DA 7→
(
∧iDA(κA,1 + · · ·+ κA,i)

)n
i=1

.
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Since the bottom horizontal arrow is relatively representable, so is the top arrow. The calculation
of the tangent space is clear from this as well. �

We also have an inclusion XD,f ⊂ Xh
D,R. Indeed, crystalline deformations have integer Hodge-

Tate weights and so the twisting in the definition of Xh
D,R can always be undone. Note that this

containment holds for any choice of refinement, not just the non-critical ones (cf. Proposition 3.29).

Remark. The arrow appearing in the definition

thD,R = ker

(
tD →

n⊕
i=1

t0∧iD(k1+···+ki)/t
F1···Fi,0
∧iD(k1+···+ki)

)
is far from surjective, unless n = 2. The following lemma also shows that the appearance of the
top exterior power in (3.11) is superfluous.

Lemma 3.35. Let δ : Q×p → L× be a crystalline character of weight k and crystalline eigenvalue
φ ∈ L×. Then, tkRL(δ) = t

φ,k
RL(δ) = tRL(δ),f = t

φ
RL(δ).

Proof. Without loss of generality δ = 1. Then, we have to show that if δ̃ : Q×p → L[ε]× is
a deformation of the trivial character with constant weight zero, it is crystalline. However, if δ̃
has weight zero then η := δ̃

∣∣
Z×p

is finite order and δ̃ is crystalline if and only if η = 1. We now
show η = 1. For, if z ∈ Z×p then we write η(z) = 1 + a(z)ε. This defines a group homomorphism
a : Z×p → L (the additive group of L). Moreover, η has finite order if and only if a has finite order.
Since L is divisible, this is not possible unless a = 0. �

The corollary we previously alluded to is the following.

Corollary 3.36. thD,R = ker
(
tD →

⊕n−1
i=1 t0∧iD(k1+···+ki)/t

F1···Fi,0
∧iD(k1+···+ki)

)
.

3.2.4. Putting it all together. To end this section on deformation theory we prove a theorem
on the dimension of a certain deformation ring which we expect to be very close to the deformations
appearing in a p-adic family. It will pull together all the deformation problems we have considered:
crystalline deformations, paraboline deformations and deformations of Kisin-type.

Fix first a regular, crystalline (ϕ,Γ)-module D over RL of rank n, say. Then, we make a choice
P = (Pi)ni=1 of a triangulation for D. Denote by (δ1, . . . , δn) the parameter associated to P and by
(φ1, . . . , φn) its associated ordering of Frobenius eigenvalues on ϕ. As in §2.3.1 we have its maximal
non-critical parabolization P nc associated to P . Denote by s the length of P nc. Thus we have the
deformation functor XD,Pnc associated to this parabolization from §3.2.2. Moreover, we consider
the map

(3.12) XD,Pnc →
s∏
i=1

XGrj Pnc .

we first encountered in (3.9). We furthermore make the following regularity hypotheses on the
crystalline eigenvalues:

(a) φiφ−1
j /∈ {1, p} for any i 6= j.

(b) The eigenvalue φ1 · · ·φi is multiplicty one on Dcris(∧iD) for i = 1, . . . , n.
Notice that while the former hypothesis is independent of P , the latter is not.

What we do now is use the paraboline deformations in concert with the Kisin-type deformations
to make a successive cutting down of our deformation problem. That is, we define a deformation
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problem X
par,∧
D,P (notice that we decorate it with the triangulation for emphasis) by the following

fibered product

(3.13) X
par,∧
D,P

//

��

XD,Pnc

��∏s
i=1 Xh

Grj Pnc,Rj
//
∏s
i=1 XGrj Pnc

Here, Rj is the refinement of Grj P nc induced from the triangulation P of D.

Lemma 3.37. X
par,∧
D,P ⊂ XD is relatively representable.

Proof. Hypothesis (b) and Proposition 3.34 together imply that the bottom arrow defines a
relatively representable subfunctor. Thus the same is true for the top arrow. Finally hypothesis
(a) and Corollary 3.26 also imply that XD,Pnc is a relatively representable subfunctor of XD and
thus we are done. �

Since X
par,∧
D,P is relatively representable, it has a well-defined tangent space. By definition, we

get a short exact sequence

(3.14) 0→ t
par,∧
D,P → tD,Pnc →

s⊕
i=1

tGrj Pnc/thGrj Pnc,Rj → 0.

The final arrow is surjective because hypothesis (a) implies that the right vertical arrow of (3.13)
is surjective on points. The middle term is computed by Proposition 3.27. The quotient is what
we were discussing in the remark proceeding Proposition 3.34. Thus, by inductively computing the
quotients appearing in the direct sum, we can manage to compute the dimension of t

par,∧
D,P . Since

P nc is non-critical, Proposition 3.29 implies that tD,f ⊂ tD,Pnc .
We now finish with the promised theorem. If E is a crystalline (ϕ,Γ)-module and R is a

refinement of E then we will consider the following hypothesis:

(3.15) Xh
E,R is a relatively representable subfunctor of XE and dim thE,R/tE,f ≤ rankRL E.

Theorem 3.38. Assume D has regular weights and satisfies (a)-(c). Assume as well that for
all j, Grj P nc together with its induced refinement Rj satisfy the hypothesis (3.15). Then, we have
that

dim t
par,∧
D,P /tD,f ≤ rankRL D.

Further, (3.15) is an equality for all Grj P nc if and only if dim t
par,∧
D,P /tD,f = rankRL D.

Recall that Lemma 2.26 implies that each Grj P nc is fully critical. Thus, the assumption of the
theorem is about the deformation theory of fully critical refinements of crystalline (ϕ,Γ)-modules.
Instance where this hypothesis is satisfied are given in §3.3.

Proof of theorem. To fix notation we let nj := rankRL Grj P nc. Then we know that

dim tGrj Pnc = n2
j + dimH0(ad Grj P nc)

by the Euler-Poincaré-Tate characteristic formula (Proposition 2.16) and Proposition 3.28 (please
apply it with the trivial parabolization of Grj P nc). On the other hand,

dim tGrj Pnc,f = dimH0(ad Grj P nc) +
(
nj
2

)
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by Proposition 3.5 and Proposition 3.28. Thus the assumption (3.15) implies that

dim tGrj Pnc/thGrj Pnc,Rj = dim tGrj Pnc/tGrj Pnc,f − dim thGrj Pnc,Rj/tGrj Pnc,f

≥ n2
j +

(
nj
2

)
− nj .

Turning to D itself, Proposition 3.27 and Proposition 3.28 (again) imply that

dim tD,Pnc = dim End(ϕ,Γ)(D) +
∑
i≤j

ninj .

Let d := dim End(ϕ,Γ)(D). Plugging all of this into (3.14), we get

dim t
par,∧
D,P ≤ d+

∑
i≤j

ninj −
s∑
i=1

(
n2
i +

(
ni
2

)
− ni

)

= d+
s∑
i=1

ni +
(
ni
2

)
+
∑
i<j

ninj


= d+ n+

s∑
i=1

(ni
2

)
+
∑
i<j

ninj

 ,

and hence

dim t
par,∧
D,P /tD,f ≤ d+ n+

s∑
i=1

(ni
2

)
+
∑
i<j

ninj

− (d+
(
n

2

))

= n+
s∑
i=1

(ni
2

)
+
∑
i<j

ninj

− (n
2

)
.

The question is then settled by the fullowing numerical identity. �

Lemma 3.39. Let n =
∑s

i=1 ni. Then,(
n

2

)
=

s∑
i=1

(
ni
2

)
+
∑
i<j

njnj .

Proof. We prove it by induction on s, the case of s = 1 being clear. If s > 1 we let n′ :=
n− n1 =

∑s
i=2 ni. By induction then
s∑
i=1

(
ni
2

)
+
∑
i<j

ninj =
(
n1

2

)
+ n1

s∑
i=2

nj +
(
n− n1

2

)
=

1
2

(n1(n1 − 1) + 2n1(n− n1) + (n− n1)(n− n1 − 1))

=
1
2
(
n2 − n

)
.

�

This completes our main explanation of the deformation theory of (ϕ,Γ)-modules. In the next
section we present some cases where the hypothesis of this final theorem have been checked.
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3.3. Computations of Kisin-type deformation functors for fully critical refinements

In this short section we collect some explicit calculations of the tangent spaces to Kisin-type
deformation functors. We show that the hypothesis of Theorem 3.38 is satisfied if (in the notation
there) the associated gradeds Grj P nc have

(a) rank at most two, or
(b) rank three and if Grj P nc is a sum of three characters then the associated weight ordering

(s1, s2, s3) is not strictly decreasing.
This list is far from exhaustive, so please consider it just a sampling of what is possible.

As an example then, we have the following corollary. It will be used to give new examples of
smooth points on p-adic families (see Chapter 5).

Proposition 3.40. Suppose D is an indecomposable rank three crystalline (ϕ,Γ)-module with
regular weights and distinct crystalline eigenvalues. Suppose as well that for each pair of eigenvalues
φ 6= φ′ we have φ 6= pφ′. Then, for any choice of triangulation P on D we have that dimt

par,∧
D,P /tD,f ≤

3.

Proof. It suffices (by Theorem 3.384 and the case (a) above) to show that for any choice of
triangulation P , P nc is non-trivial. Let k1 < k2 < k3 be the Hodge-Tate weights of D and choose
a triangulation

P : 0 ( P1 ( P2 ( D.

Denote by (δ1, δ2, δ3) the associated parameter. Suppose that both P1 and P2 are critical and we
will show that D is decomposable. By duality, we may assume without loss of generality that
wt(δ1) = k3. Indeed, if P1 is critical then either wt(δ1) = k2 or wt(δ1) = k3. If we are in the first
case, then since P2 is critical we must have wt(δ2) = k3 and wt(δ3) = k1. Thus D∨ has the dual
parameter (δ−1

i )3
i=1 and wt(δ−1

1 ) is the highest Hodge-Tate weight.
Let Q2 = D/RL(δ1). Then, by definition we may see D as an element of Ext1

(ϕ,Γ)(Q2,RL(δ1)) ∼=
H1(Q∨2 (δ1)). Moreover, since D is crystalline it defines a class inside the Bloch-Kato Selmer group
H1
f (Q∨2 (δ1)) ⊂ H1(Q∨2 (δ1)). However, Q∨2 (δ1) has two Hodge-Tate weights k3−k2 and k3−k1, each

of which is positive. Thus, Propostion 2.19 implies that

dimH1
f (Q∨2 (δ1)) = dimH0(Q∨2 (δ1)) = 0.

The last equality following from the regularity of the eigenvalues. Thus, D must be split. �

In the following sections we carefully compute thD,R with respect to fully critical refinements.

3.3.1. The rank one case. It is sort of silly (there are no critical refinements) to describe
this, but here it goes anyways. Let δ be a crystalline character of weight k ∈ Z. Then we have the
following facts:
(1) adRL(δ) ∼= RL as (ϕ,Γ)-modules.
(2) There is only one triangulation P : 0 ( RL(δ); it is non-critical.
(3) By Proposition 2.1, any deformation DA to A is of the form RA(δA) and is thus a trianguline

deformation.
(4) Equivalently, Dcris(RA(δA)(wt δA))ϕ=δA(p) is always free of rank one.

In particular we have that t0RL(δ)(wt δ) = t
δ(p),0
RL(δ)(wt δ) and thus (3.14) says that

t
par,∧
RL(δ),P = ker

(
tRL(δ) → 0

)
= tRL(δ).

4Notice that the hypothesis on the second exterior power ∧2D can be seen as a hypothesis on D∨, up to a twist.
It is easy to see that our assumptions are enough to conclude that condition (b) preceding Theorem 3.38 is satisfied.
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In particular, t
par,∧
RL(δ),P /tRL(δ),f = tRL(δ)/tRL(δ),f is one-dimensional (by Proposition 2.19). We could

have also used Corollary 3.36 to conclude the same thing.

3.3.2. Critical rank two triangulations. Let D be a rank two crystalline (ϕ,Γ)-module
over RL with regular Hodge-Tate weights k1 < k2 and crystalline eigenvalues φ1 6= φ2. Assume
that D has a critical refinement. By Example 2.22 this is equivalent to D being split.

Label the crystalline eigenvalues (φ1, φ2) so that it defines a critical refinement Rcrit of D. We
write the associated parameter is (δ1, δ2) = (z−k2 unr(φ1), z−k1 unr(φ2)) and we assume as well now
that φ1 6= p±1φ2.

We now begin to show that (3.15) is valid for D with respect to Rcrit. Note that by Corollary
3.36 we have that

thD,Rcrit
= ker

(
tD → t0D(k1)/t

δ1(p),0
D(k1)

)
.

Since D is split, adD is also split and we have a decomposition

tD = H1(adD) =
2⊕

i,j=1

H1(RL(δiδ−1
j )).

In §2.1.2 we defined functors D+
dif and DSen which fit into a diagram of categories:

(ϕ,Γ)/RL
D+

dif //

DSen

��

Qp(µp∞)[[t]][Γ] -mod

⊗/tuujjjjjjjjjjjjjjj

Qp(µp∞)[Γ] -mod

On the level of cohomology groups, we have morphisms

(3.16) H1(adD)
D+

dif // Ext1(D+
dif(D), D+

dif(D))

��

∼= //
⊕2

i,j=1H
1(Γ, D+

dif(δiδ
−1
j ))

��

H1(adD)
DSen // Ext1(DSen(D), DSen(D))

∼= //
⊕2

i,j=1H
1(Γ, DSen(δiδ−1

j ))

The cohomology groups in the right column are easily computed. We have

(3.17) dimQp H
1(Γ, tnQp(µp∞)) =

{
1 if n = 0,
0 otherwise.

By dévissage we get that

(3.18) dimQp H
1(Γ, tnQp(µp∞)[[t]]) =

{
1 if n ≤ 0,
0 otherwise.

In particular, putting the coefficient structure back in we have that

(3.19) H1(Γ, DSen(δiδ−1
i )) ∼= L.

Suppose that D̃ ∈ H1(adD). Write κ̃i = ki + biε for the Hodge-Tate-Sen weight deforming ki. We
recall from §3.2.2 that the constant weight deformations are given by

(3.20) tkiD = ker
(
H1(adD)→ H1(Γ, DSen(δiδ−1

i ))
)
.

The key lemma for computing t
φ1

D is the following

Lemma 3.41. If D̃ ∈ thD,Rcrit
. then κ̃2 − κ̃1 = k2 − k1 is constant.
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Proof. Write D̃′ for D̃(κ̃1). Recall that F1 = p−k1φ1 and we choose Φ̃ ∈ L[ε]× such that
Φ̃ = F1 + aε and that Dcris(D̃′)ϕ=eΦ is free of rank one. Our goal is to show that D̃′ (which is an
element of t0D(k1)) is actually inside the subspace tk2−k1

D(k1) .
Consider the factorization (in the notation of §3.2.2)

tD(k1)

��

// Ext1
(
DSen(D(k1))(k2−k1), DSen(D(k1))(k2−k1)

)
tRL(δ1)(k1)

33ggggggggggggggggggggg

.

Since tk2−k1

D(k1) is the kernel of the top horizontal map, we will check its image under the projection

tD(k1) → tRL(δ1)(k1) lands inside the constant weight subspace tk2−k1

RL(δ1)(k1). To see this note that
by Lemma 3.33 we know that the projector tD(k1) → tRL(δ1)(k1) induces a map on subspaces

t
δ1(p),0
D(k1) → t

δ1(p)
RL(δ1)(k1). We then apply Lemma 3.35 to see that t

δ1(p)
RL(δ1)(k1) = tk2−k1

RL(δ1)(k1). �

Following this result we can compute thD,Rcrit
.

Proposition 3.42. There is a diagram

0 // tD,f // thD,Rcrit
// Ext1

Γ(D+
dif(D), D+

dif(D))

0 // tD,f // t
h,k1

D,Rcrit

OO

// Ext1
Γ(D+

dif(D), D+
dif(D))

with exact rows. The image of the final map is at most two-dimensional (resp. one-dimensional)
in the top (resp. bottom) row.

Proof. First, the assumptions we have on the crystalline eigenvalues implies that we have that

tD,f = tD,g = ker(tD → Ext1(D+
dif(D), D+

dif(D)).

Furthermore, tD,f ⊂ t
h,k1

D,R, hence the exact sequence. It remains for us to compute the image.
Let ∗ be either Sen or dif+ and set

E∗(i, j) = Ext1(D∗(RL(δi)), D∗(RL(δj))).

We then consider a diagram

thD,Rcrit

((RRRRRRRRRRRRRR

Ext1(D+
dif(D), D+

dif(D))
∼= //

��

E+
dif(1, 1)⊕ E+

dif(2, 2)⊕ E+
dif(1, 2)

(∼=,∼=,0)

��

Ext1(DSen(D), DSen(D)) ∼=
// ESen(1, 1)⊕ ESen(2, 2)

The isomorphisms are justified by (3.17) and (3.18). Furthermore, the same computations imply
that each direct summand in the right hand column is one-dimensional.

If D̃ ∈ thD,Rcrit
then we just saw in Lemma 3.41 that the image of D̃ in the bottom right column

is contained in diagonal subspace {(a, a) : a ∈ L} and hence its image in the upper right corner
is contained in the two-dimensional space consisting of E+

dif(1, 2) and the diagonal subspace of
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E+
dif(1, 1)⊕ E+

dif(2, 2) = L⊕2. This shows the image in the top row has dimension at most two. In
the case where κ̃1 = k1 is a constant weight, we have that its image in the bottom right is zero and
hence the image in the top right is contained in E+

dif(1, 2). �

This completes all the relevant computations in the rank two situation. We are now free to
apply Theorem 3.38 to any (ϕ,Γ)-module with respect to a triangulation whose maximal non-
critical parabolization has associated grades of rank at most two.

3.3.3. A three-dimensional, anti-ordinary case. Here we will present partial computa-
tions in the fully critical rank three case. We fix a rank three crystalline (ϕ,Γ)-module D over RL
with regular weights k1 < k2 < k3, satisfying the hypotheses (a) and (b) of §3.2.4. Notice that the
arguments in Proposition 3.40 show that if P is fully critical then D is necessarily split. We now
make the following assumptions:

(i) D is decomposed into a direct sum RL(δ)⊕D0 where wt(δ) = k3.
(ii) P is a fully critical triangulation 0 ( RL(δ) ( P2 ( D such that the induced triangulation on

D/RL(δ) ∼= D0 is non-critical (notice that this is different than P2 being non-critical!)
(iii) The hypothesis (a) and (b) from §3.2.4 holds.
(iv) We have Hom(ϕ,Γ)(D0(1), D0) = (0) (this will be used in a technical manner, see Corollary

3.47).
Please note that if P orders the eigenvalues (φ1, φ2, φ3) then the associated ordering of the

weights must be (s1, s2, s3) = (k3, k1, k2). Indeed, we know s1 = k3 because wt(δ) = k3. If s2 = k2

then the induced triangulation on D0 would be critical, which we have ruled out.

Remark. We know by definition that any fully critical triangulation P must order the weights
(s1, s2, s3) as one of

(k3, k1, k2), (k2, k3, k1), (k3, k2, k1).
The first case is the one we are investigating here and the second is dual to the first. In the third
case, D is necessarily split into a direct sum of characters and we have (thus far) been unable to
verify (3.15) in that case. Note that we haven’t ruled out that D is totally split in our hypothesis,
just this ordering in the totally split case.

Recall that our goal is to prove the following theorem.

Theorem 3.43. dimL thD,P /tD,f ≤ 3.

The proof is going to follow ideas very similar to that of §3.3.2. However, we will certainly
have to make use of at least one higher exterior power. By Lemma 3.35 we can still ignore the top
exterior power in the calculation of thD,P .

Recall that the following well known fact. Suppose that S is a commutative ring and that M is
a finite free module of rank n over S. Then there exists canonical isomorphisms ∧p(M∨) ∼= ∧p(M)∨

for each 0 ≤ p ≤ n. Moreover, this defines an isomorphism

∧p(M∨)⊗ ∧n(M)→ ∧n−p(M∨)∨

x⊗ y 7→
[
x′ 7→ 〈x ∧ x′, y〉

]
where 〈, 〉 is the pairing detM ⊗ det(M∨)→ S. In particular, there exists canonical isomorphisms

∧p
(
M∨

)
⊗S ∧nM

∼=−→ ∧n−pM.

The naturality implies that we have (ϕ,Γ)-equivariant isomorphisms
(a) ∧2D ∼= D∨(detD), and
(b) D0

∼= D∨0 (detD0).
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Using this, we have the following direct sum decompositions
tD = tD0 ⊕ tRL(δ) ⊕H1(D0(δ−1))⊕H1(D∨0 (δ)),

tD(k1) = tD0(k1) ⊕ tRL(δ)(k1) ⊕H
1(D0(δ−1))⊕H1(D∨0 (δ)), and

t∧2D(k1+k2) = tdetD0(k1+k2) ⊕ tD0(δ)(k1+k2) ⊕H
1(D0(δ(detD0)−1))⊕H1(D∨0 (δ−1 detD0)).

Notice that we have kept the weight twisting in some components (e.g. tD0(k1) in the second line)
but not in others (e.g. H1(D0(δ−1)) in the same line). This is just a matter of taste.

Recall that Fi = p−kiφi. By Lemma 3.33 and Lemma 3.35 we have have that the projector
tD(k1) → tRL(δ)(k1) maps t

F1,0
D(k1) into the crystalline subspace tRL(δ)(k1),f . Furthermore, D0(δ−1)

has only negative Hodge-Tate weights k1 − k3 and k2 − k3. Thus, by Proposition 2.19 we have
that H1

f (D0(δ−1)) = H1(D0(δ−1)). On the other hand, H1
f (D∨0 (δ)) = (0). It follows from these

comments that one has an inclusion

(3.21) t
F1,0
D(k1)/tD(k1),f ↪→ t0D0(k1)/tD0(k1),f ⊕H1(D∨0 (δ)).

Similar comments reveal that we also have an inclusion (note that D0(δ(detD0)−1) has two positive
Hodge-Tate weights k3 − k1 and k3 − k2)

(3.22) t
F1F2,0
∧2D(k1+k2)

/t∧2D(k1+k2),f ↪→ tF1F2

D0(δ)(k1+k2)/tD0(δ)(k1+k2),f ⊕H1(D0(δ(detD0)−1)).

The next point is that we have as well as a diagonal map

(3.23) thD/tD,f → t
F1,0
D(k1)/tD(k1),f ⊕ t

F1F2,0
∧2D(k1+k2)

/t∧2D(k1+k2),f .

We then will compute thD/tD,f by
(a) understanding the kernel of (3.23) (see Corollary 3.46)
(b) understanding the image of (3.23) after postcomposing with (3.21) and (3.22).

The technique we are going to use for this is that there is a map ω : t0D(k1) → t0∧2D(k1+k2) that fits
into a diagram

t0D(k1)

eD′ ω7→∧2 eD′(−eκ′2)

��

tD

eD 7→ eD(eκ1)
::tttttttttt

eD 7→∧2( eD)(eκ1+eκ2) $$J
JJJJJJJJJ

t0∧2D(k1+k2).

Here, the notation κ̃′2 means the Hodge-Tate-Sen weight of D̃′ which deforms the “second weight”
k2 − k1 of D(k1) (the “first weight” is zero). It is easy to see that this diagram commutes. Thus,
we can study the image of (3.23) by studying the image in the first direct summand then studying
the image of that under ω. We now begin making our comptutations.

Lemma 3.44. The map ω : t0D(k1) → t0∧2D(k1+k2) induces an isomorphism

(3.24) H1(D∨0 (δ))
∼=−→ H1(D0(δ−1 detD0)).

Proof. If we unwind the definition, we get that ω sends an element Ẽ ∈ H1(D∨0 (δ)) arising
from D̃′ ∈ tD(k1) to the (ϕ,Γ)-module F̃ := Ẽ∨(det D̃′)(κ̃′2) inside the space H1(D0(δ−1 detD0)).
Since the dimension of each side of (3.24) is the same (by hypothesis (iii)) , it suffices to show that
the map is injective. So, suppose that F̃ is split. Since the weights of D0 are different than the
weight of δ we have that both Ẽ and F̃ are Hodge-Tate. In particular, the character η̃ = (det D̃′)(κ̃′2)
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is Hodge-Tate. But, since its reduction η = (detD)(k1 +k2) is crystalline, η must also be crystalline
by Lemma 3.35. Thus if F̃ is split, so is Ẽ∨. Finally, Ẽ must also be split then. �

The key result for us is going to be the following proposition. It provides us with the analog of
Lemma 3.41.

Proposition 3.45. Suppose that D̃ ∈ thD,P with Hodge-Tate-Sen weights κ̃1, κ̃2 and κ̃3. Then,
for all pairs (i, j) we have that κ̃i − κ̃j is constant.

Proof. Consider the projection tD(k1) � tRL(δ)(k1). By Lemma 3.33, the projection tD(k1) →
tRL(δ)(k1) maps thD(k1),P into the subspace tF1

RL(δ)(k1). The constancy of κ̃3 − κ̃1 then follows from
Lemma 3.35.

It now suffices to show that κ̃3− κ̃2 is constant. For this we consider the deformation condition
on the second exterior power. Notice that ∧2D(k1 +k2) contains D0(δ)(k1 +k2) as a (ϕ,Γ)-module
direct summand and we consider the composition tD → t∧2D(k1+k2) → tD0(δ)(k1+k2). The image in
the final subspace is in charge of (among other things) keeping track of the deformations κ̃3 − κ̃2

and κ̃3− κ̃1 of the two weights k3−k2 and k3−k1 appearing in ∧2D(k1 +k2). But notice now that
k3 − k2 is the least Hodge-Tate weight of D0(δ)(k1 + k2) and, moreover, if D̃ ∈ thD,P then its image
lands inside tF1F2

D0(δ)(k1+k2) by Lemma 3.33. By the constant weight lemma [5, Proposition 2.5.4] (see
also the remarks proceeding Lemma 3.41), we have that κ̃3 − κ̃2 is constant. �

Corollary 3.46. We have that

ker
(
thD,P → t0D(k1) ⊕ t0∧2D(k1+k2)

)
= ker

(
thD,P → t0D(k1)

)
Proof. Unwinding the equality we need to show that if D̃ ∈ thD,P such that D̃(κ̃1) is a constant

deformation then ∧2D̃(κ̃1 + κ̃2) is also constant. However, we have that

∧2D̃(κ̃1 + κ̃2) = ∧2
[
D̃(κ̃1)

]
(κ̃2 − κ̃1)

By Proposition 3.45 the final twist is a twist by an integer and thus the claim is clear. �

Corollary 3.47. The composition thD,P → t0∧2D(k1+k2) → tD0(δ)(k1+k2) has image inside the
crystalline subspace tD0(δ)(k1+k2),f .

Proof. Let D̃ ∈ thD,P and for the moment let us use the notation D̃′ for its image in tD0(δ)(k1+k2).
By Lemma 3.33 we know that D̃′ must land inside tF1F2

D0(δ)(k1+k2). However, the refinement (F1F2, F1F3)
of D0(δ)(k1 + k2) is non-critical by the assumption (ii) at the beginning of this subsection. Thus,
D̃′ is a trianguline deformation of D0(δ)(k1 + k2) with respect to this refinement. Furthermore,
by Proposition 3.45 we know that D̃′ is also Hodge-Tate. Thus we can apply [5, Theorem 2.5.1]
to D̃′—the hypothesis there being valid because of our hypothesis (iv) at the beginning of this
subsection. The conclusion, is that D̃′ is crystalline, which is what we wanted to show. �

Corollary 3.48. The image of the composition thD,P → t0D(k1) → t0D0(k1) lands inside tD0(k1),f .
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Proof. We consider the following diagram whose dashed arrows we have explained

tD
∧2(−)(twist)

%%J
JJJJJJJJJ

twist

||yy
yy

yy
yy

t0D(k1)

����

ω //________ t0∧2D(k1+k2)

����

t0D0(k1)
//_______ tD0(δ)(k1+k2).

The vertical arrows are projections. It is easy to see that the diagram commutes.
Now let D̃ ∈ thD,P and denote by D̃′ its image in t0D(k1). We call Ẽ its image under the left

vertical map (which we want to show is crystalline) and F̃ its image in the bottom right corner. A
diagram chase reveals that the relationship between these three is that

F̃ =
(
Ẽ∨ ⊗ det D̃′

)
(κ̃′2).

By Corollary 3.47 we know that F̃ is crystalline. We now as well that κ̃′2 = κ̃2 − κ̃1 is constant by
Proposition 3.45. Thus, Ẽ∨(det D̃′) is crystalline as well. However, Ẽ is rank two over RL[ε] and
thus we have that

Ẽ∨(det D̃′) = Ẽ(det D̃′(det Ẽ)−1)

Thus it suffices to show that det D̃′(det Ẽ)−1 is crystalline. However, this is a deformation of a
crystalline character and its Hodge-Tate weight is κ̃′3 = κ̃3 − κ̃1. By Proposition 3.45 this is an
integer and we are done. �

We now put it all together to prove Theorem 3.43.

Proof of Theorem 3.43. First, notice that ker
(
tD → t0D(k1)

)
∩ tD,f = (0). In fact, if D̃ is

crystalline then κ̃1 = k1. In that case, D̃(κ̃1) is split if and only if D̃ is. In particular, we have an
inclusion ker

(
thD → t0D(k1)

)
⊂ thD/tD,f .

On the other hand, the three previous corollaries imply that we can compute a superspace for
the cokernel; we express this as the short exact sequence

0→ ker
(
thD → t0D(k1)

)
→ thD/tD,f → H1(D0(δ−1)).

In particular we have that

dim thD/ dim tD,f ≤ dimH1(D0(δ−1)) + dim
[
ker(thD → t0D(k1))

]
≤ 3.

The final inequality follows because we clearly have that tD � t0D(k1) and thus

ker(thD → t0D(k1)) ⊂ ker(tD → t0D(k1)) ∼= L,

the last isomorphism being a simple calculation of dimensions. �

68



CHAPTER 4

Families of (ϕ, Γ)-modules

Fix an affinoid space X = Sp(A). We assume throughout that X is reduced. Recall that we
have the notion of a (ϕ,Γ)-module over the space X from Chapter 1. In the present chapter, we will
focus on examples which we call refined families of (ϕ,Γ)-modules. Such families arise naturally
from the construction of p-adic families of automorphic forms. At each point in x ∈ X, the (ϕ,Γ)-
module Dx will carry a canonical triangulation Px and our main theorem will concern the analytic
variation of these triangulations near classical points.

Previously, it has been understood [43, 5] that near classical, non-critical points x (points
where Px is non-critical), the triangulations deform infinitesimally. The departure of this chap-
ter from previous results is that we work at any classical point and obtain results over affinoid
neighborhoods, rather than just finite thickenings. Of course, we cannot prove that the triangu-
lations vary analytically—that is patently false. Rather, our main theorem is that the maximal
non-critical parabolizations P nc

x attached to the triangulations Px (recall §2.3.1) extend to affinoid
neighborhoods of classical points on refined families of (ϕ,Γ)-modules.

The organization of this chapter is as follows. We first recall the recent work of Kedlaya,
Pottharst and Xiao [41] on the Galois cohomology for (ϕ,Γ)-modules in families. Their main
result (for us) is a finiteness result for the (ϕ,Γ)-cohomology over the base X. This allows us to
develop a “cohomology and base change” framework.

Second, we explain the notion of a refined family of (ϕ,Γ)-modules and state the main theorem
of this chapter. The definition is meant to capture axiomatically the a priori structure of Galois
representations (restricted to a decomposition group at p) which appear in p-adic families of au-
tomorphic forms. We make an effort, however, to limit the axioms, forcing us to deduce certain
properties which we might know a priori in applications. This decision has been made in order to
precise the nature of variation one wants to have on hand in a p-adic family before questions about
the variation of triangulations should be considered. With the definition in hand, we move towards
the statement of the main theorem (Theorem 4.13).

The final section is dedicated to the proof of the theorem. It itself is broken up into three
sections—each slightly more general than the previous: the non-critical case, the minimally critical
case and then the general case. The non-critical case is by far the easiest to understand and the
situation which we follow in spirit for the latter two proofs. We have included the middle case
because there we can give a significantly less involved proof, which we hope the reader will find
enlightening.

Before beginning the chapter proper, we want to especially acknowledge the debt that this work
owes to the authors of [41]. The reader aware of their work will no doubt see their influence in the
work in the below.

4.1. Galois cohomology II

Recall that in §1.2.3 we defined and studied generalized (ϕ,Γ)-modules Q over X. In order to
focus on arithmetic aspects in the case where X is zero-dimensional, we delayed the discussion of
the Galois cohomology over more general X until now.
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4.1.1. Finiteness of Galois cohomology. Recall from §2.2.1 that we can associate, to a
generalized (ϕ,Γ)-module Q, the Herr complex:

C•γ(Q) : Q∆ d1
γ−→ (Q∆)⊕2 d2

γ−→ Q∆.

This complex depends, up to quasi-isomorphism, only on the choice of a topological generator γ of
Γ/∆ where, again, ∆ is the p-torsion subgroup of Γ. Just as before we define the Galois cohomology
of Q as H i(Q) := H i(C•γ(Q)). In order to give the important finiteness result we have to restrict
Q slightly more.

Definition. We say that a generalized (ϕ,Γ)-module Q is finitely presented if there exists a
finite presentation

M
f−→ N

g−→ Q→ 0
where M and N are (ϕ,Γ)-modules over X and f and g are (ϕ,Γ)-equivariant.

Recall that a generalized (ϕ,Γ)-module is a finitely presented RX -module with RX -semi-linear
operations by the group Γ and a RX -semi-linear operator ϕ. Note, however, that it is not clear that
a generalized (ϕ,Γ)-module is a finitely presented (ϕ,Γ)-module. In the case where X = Sp(L) is
the affinoid spectrum of a field then it follows as in the proof Corollary 2.8 but that uses in a crucial
way the structure of finitely generated modules over the Robba ring RL, which is not available over
more general X.

Proposition 4.1. If Q is a finitely presented generalized (ϕ,Γ)-module over RX then Hj(Q)
is a finite A-module for all j.

Proof. We thank Jay Pottharst for explaining this to us. By the main theorem of [41] (see
the introduction of loc. cit.) if Q = M is projective then the cohomology groups H•(M) are all
finite A-modules.

In general, choose a finite (ϕ,Γ)-equivariant presentation M
f−→ N → Q→ 0. We make use of

the mapping cone of a complex [63, §1.5]. Since Q 7→ C•γ(Q) is exact, we have a quasi-isomorphism
(in the derived category of RX -modules)

(4.1) C•γ(Q)
q
' cone

(
C•γ(M)

f−→ C•γ(N)
)
.

However, general principles say that one has a short exact sequence of complexes

0→ C•γ(N)→ cone
(
C•γ(M)

f−→ C•γ(N)
)
→ C•γ(M)[−1]→ 0.

Thus the result follows from (4.1) and the projective case in the first paragraph. �

Remark. Prior to [41], the same finiteness result was obtained by Chenevier [17] under the
assumption that Q = M is projective and trianguline over X. Since our goal is to show that certain
(ϕ,Γ)-modules are trianguline, this assumption would be too strong.

4.1.2. A homological interlude. Our next goal is to understand the Galois cohomology
H•(Q) in terms of the pointwise Galois cohomology groups H•(Qx). But, since we have a separate
need for a base change result, we have found it most convenient to pause here and explain some
formalism coming from homological algebra.

Proposition 4.2 (Künneth). Let R be a commutative ring and · · · → P 2 → P 1 → P 0 be a
complex of R-modules. Assume that N is an R-module such that TorRj (P p, N) = (0) for all j ≥ 1
and all p ≥ 0. Then, there is a first quadrant spectral sequence

E2
pq = TorRp (Hq(P •), N)⇒ Hp+q(P • ⊗R N).
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Proof. This is stated as [63, Theorem 5.6.4] under the additional hypothesis that P p be flat
over R for each p ≥ 0. However, the proof of loc. cit. clearly only requires that the Tor-groups
against N vanish. �

We have two ways in which we will use this result.

Corollary 4.3. Let Q be a generalized (ϕ,Γ)-module over X and assume that for each x ∈ X,
we have TorAj (Q,L(x)) = (0) for each j ≥ 1. Then there is a first quadrant spectral sequence

TorAp (H2−q(Q), L(x))⇒ H2+p−q(Qx).

Proof. Apply Proposition 4.2 to R = A, the complex P • = C•γ(Q) and N = L(x). Notice
that Hq(P •) = H2−q(Q). �

Corollary 4.4. Let Q be a finitely presented module over RX . Suppose that for each j ≥ 1
and x ∈ X that TorAj (Q,L(x)) = (0). Let M ≥ 1 be an integer. Then, there is a four term exact
sequence

(4.2) 0→ TorA2 (Q/tM , L(x))→ Q[tM ]⊗A L(x)→ Qx[tM ]→ TorA1 (Q/tM , L(x))→ 0.

Proof. Let P • be the two term complex [Q tM−→ Q]. Then

Hq(P •) =


Q/tM if q = 0,
Q[tM ] if q = 1, and
0 if q ≥ 2.

The spectral sequence from Proposition 4.2 degenerates on the E3-page on the short exact sequence
follows from the explicit terms on the E3-page. �

4.1.3. Cohomology and base change. We fix for the rest of the section a finitely presented
generalized (ϕ,Γ)-module Q over RX . Suppose that x ∈ X. Notice then there are canonical maps
C•γ(Q)⊗A L(x)→ C•γ(Qx) which respect the boundary maps djγ . We say that Hj(Q) satisfies base
change if the induced map Hj(Q)⊗A L(x)→ Hj(Qx) is an isomorphism. Notice that since C•γ(Q)
is concentrated in degrees 0, 1 and 2 we have that H2(Q) always satisfies base change. In general,
we can use Corollary 4.3 to understand when Hj(Q) satisfies base change. For this section we
denote for 0 ≤ i ≤ 2 the function

di(Q, x) := dimL(x)H
i(Qx).

Lemma 4.5. Assume that for all j ≥ 1 and x ∈ X we have that TorAj (Q,L(x)) = (0). If the
function di(Q, x) is locally constant with respect to x for i ≥ k then H i(Q) is flat on X for i ≥ k
and satisfies base change for i ≥ k − 1.

Proof. Notice that since A is noetherian, reduced and each H i(Q) is finite, by Proposition
4.1, we have that H i(Q) is flat if and only x 7→ dimL(x)H

i(Q)⊗A L(x) is locally constant.
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To check this, we apply the spectral sequence from Corollary 4.3. To help us visualize it, it is
the first quadrant spectral sequence whose differentials are shown

(4.3) 0 0 0 · · ·

H0(Q)⊗A L(x) TorA1 (H0(Q), L(x)) TorA2 (H0(Q), L(x)) · · ·

H1(Q)⊗A L(x) TorA1 (H1(Q), L(x)) TorA2 (H1(Q), L(x))

∂

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
· · ·

H2(Q)⊗A L(x) TorA1 (H2(Q), L(x)) TorA2 (H2(Q), L(x))

∂

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
· · ·

We prove the the corollary on a case-by-case basis. Notice that if k > 3 then the relevant cohomolo-
gies are all zero, so the result is true. If k = 3 then the assumption is always true and the conclusion
is that H2(Q) satisfies base change, which we remarked immediately preceeding the lemma.

Now suppose k = 2. Since H2(Q) satisfies base change, our assumption is that the function
x 7→ dimL(x)H

2(Q)x is locally constant. Thus H2(Q) is locally free by the first sentence of this
proof. We must also show that H1(Q) satisfies base change. But, since H2(Q) is flat we know that
the bottom row of (4.3) is zero except possibly in the (0, 0)-spot. In particular, the natural map
H1(Q)⊗A L(x)→ H1(Qx) is an isomorphism by Corollary 4.3. The k = 1 and k = 0 cases follow
by the same arguments. �

Corollary 4.6. Suppose that for all x ∈ X, if j ≥ 1 then TorAj (Q,L(x)) = (0). Assume as
well that the function di(Q, x) has a local minimum at a point x ∈ X for i ≥ k. Then there exists
an open affinoid U 3 x such that H i(Q) is free on U for i ≥ k and H i(Q) satisfies base change on
U for i ≥ k − 1.

Proof. By Proposition 4.1 and Nakayama’s lemma, the function

x 7→ dimL(x)H
2(Q)⊗A L(x)

is upper semi-continuous on X. Since H2(Q) always satisfies base change we have that d2(Q, x)
is upper semi-continuous. If d2 is minimized at x then we can find a U2 3 x on which d2 is
constant. By Lemma 4.5, we can further assume that H2(Q) is flat and that H1(Q) satisfies base
change. Using the same arguments we can further shrink X to assume that d1(Q, x) and d0(Q, x)
are constant. The result then follows from Lemma 4.5 applied to k = 0. �

Corollary 4.7. Assume that for all x ∈ X and j ≥ 1 that TorAj (Q,L(x)) = (0). Let x ∈ X
such that H2(Qx) = (0). Moreover, assume that Q[1/t] is flat over RX [1/t] and dimL(x)H

0(Qx)
has a local minimum at x. Then, each Hj(Q) is locally free near x and satisfies base change.

Proof. Since H2(Q) satisfies base change, Nakayama’s lemma implies that we can, without
loss of generality, assume that H2(Q) = (0). In that case, Proposition 2.16 implies that for all
x ∈ X, that

dimL(x)H
1(Qx) = rankRL(x)[1/t]Qx[1/t] + dimL(x)H

0(Qx).

The first summand on the right hand side is locally constant over X since Q[1/t] is flat overRX [1/t].
Thus, dimL(x)H

0(Qx) is minimized if and only if dimL(x)H
1(Qx) is minimized. Our claim now

follows from Corollary 4.6. �
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Corollary 4.8. Suppose that x ∈ X and if j ≥ 1 then TorAj (Q,L(x)) = (0). Assume that
Z ⊂ X is a Zariski dense subset and x ∈ X such that for 0 ≤ i ≤ 2,

(a) di(Q, z) is constant on Z, and
(b) di(Q, x) = di(Q, z) for some (hence, any) points z ∈ Z.

Then, each H i(Q) is locally free near x and satisfies base change.

Proof. For j = 2 we have that for any x ∈ X that

(4.4) dimL(x)H
2(Q)⊗A L(x) = dimL(x)H

2(Qx).

Since the left hand side is upper semi-continuous, so is the right hand. The minimum must be the
constant value over Z, as Z is Zariski dense. In particular, d2(Q, x) has a local minimum at x by
our assumption (b). It follows from Corollary 4.6 that H2(Q) is locally free near x and H1(Q)
satisfies base change. The proof then continues by the same argument using degrees one and two
in (4.4). �

4.2. Refined families

Our goal now is to state our main theorem on the variation of (ϕ,Γ)-modules over p-adic families.
For this, we must define what we mean by a refined family of (ϕ,Γ)-modules. The predecessor (as
far as we are concerned) to this idea is the notion of a refined family of Galois representations [5,
Chapter 4]. For our inductive constructions it is important that we work completely in the setting
of (ϕ,Γ)-modules which are not necessarily coming from Galois representations.

We continue to denote by X an affinoid space Sp(A), which we still assume is reduced. Through-
out, D will denote a (ϕ,Γ)-module over X. We let n := rankRX (D). If x ∈ X then we denote by
Dx the corrsponding (ϕ,Γ)-module over the residue field L(x). It has a list of n Hodge-Tate-Sen
weights {κ1(x), . . . , κn(x)} (not in any particular order, yet). We denote by

Xreg = {x ∈ X : κi(x) 6= κj(x) if i 6= j}

the locus of points where Dx has regular weights. If X0 ⊂ X then we let Xreg
0 := X0 ∩ Xreg.

Finally, we recall that a subset Z ⊂ X is said to accumulate at x ∈ X if there exists an affinoid
neighborhood basis {U}U∈U of x such that Z∩U is Zariski dense in U for all U ∈ U . If Z ⊂ X0 ⊂ X
then we say that Z accumulates on X0 if it accumulates at every point x ∈ X0.

4.2.1. Statement of the main theorem. We begin first with the definition.

Definition. A refined family of (ϕ,Γ)-modules over X is
- A (ϕ,Γ)-module D over X,
- an ordered list of continuous characters δ1, . . . , δn : Q×p → A×, and
- a Zariski dense subset Xcl ⊂ X

satisfying the following axioms:
(RF1) For all x ∈ X, the Hodge-Tate-Sen weights of Dx are {wt(δ1,x), . . . ,wt(δn,x)}. We now label

the Hodge-Tate-Sen weights by κi(x) := wt(δi,x).
(RF2) For every x ∈ Xcl, the characters δi,x are crystalline.
(RF3) If x ∈ Xcl then Dx is crystalline with Hodge-Tate weights

κ1(x) < · · · < κn(x),

(so Xcl ⊂ Xreg) and crystalline eigenvalues

{φ1(x), . . . , φn(x)} :=
{
pκ1(x)δ1,x(p), . . . , pκn(x)δn,x(p)

}
.
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(RF4) By (RF3), every point Xcl has a unique triangulation Px corresponding to the ordering
(φ1(x), . . . , φn(x)) of Frobenius eigenvalues. Let

Xnc
cl := {x ∈ Xcl : Px is a non-critical triangulation} .

Then, if C > 0 the sets

Xnc
cl,C := {x ∈ Xnc

cl : κi+1(x)− κi(x) > C for i = 1, . . . , n− 1} .

are Zariski dense in X and accumulate at every point in Xcl.

Example 4.9. The families of (ϕ,Γ)-modules constructed in Chapter 5 (see §5.2.1) will form
refined families.

The classical example we do not cover in this work is the natural family of (ϕ,Γ)-modules on the
Coleman-Mazur eigencurve [20]. In that context, the fourth axiom (RF4) follows from Coleman’s
control theorem [21].

Some remarks are in order.
• First, let us compare the definition here with the definition given in [5, Chapter 4]. We

have put together their functions (κi, Fi) as well as the existence of the character (∗) into
the characters δi.
• Except on the locusXcl, there is no reason to see the list κ1(x), . . . , κn(x) as an archimedean

ordering on the Hodge-Tate-Sen weights even when they are all integers and Dx is crys-
talline. In fact, there can be very interesting points with crystalline (ϕ,Γ)-modules and
κ2(x) < κ1(x). In the case of the eigencurve, these are called companion points [7].
• On the points x ∈ Xnc

cl it follows from (RF3) and (RF2) that the parameter of Px is
(δ1,x, . . . , δn,x) and that δi,x = z−κi(x) unr(φi(x)). On the other hand, one should be careful
to realize that the same is not true on all of Xcl. In fact, if we plug the list of eigenvalues
(φ1(x), . . . , φn(x)) into Proposition 2.21, it is possible that we get a parameter different
than (δ1,x, . . . , δn,x).

Let us expand on the final remark. Suppose that x ∈ Xcl. Then, by the regularity of the
Hodge-Tate weights of Dx, and Proposition 2.21, we know that associated to the ordered list
(φ1(x), . . . , φn(x)) of crystalline eigenvalues there is a unique triangulation Px of Dx. Furthermore,
if we denote by (s1(x), . . . , sn(x)) the ordered list of the Hodge-Tate weights at x associated to the
refinement (φ1(x), . . . , φn(x)) then the dictionary of Proposition 2.21 says that the parameter of
Px is given by (

zκ1(x)−s1(x)δ1,x, . . . , z
κn(x)−sn(x)δn,x

)
.

We will return to this in Proposition 4.12. Note now, however, that si(x) not analytic in x.
In the sequel we will continue to use the notation φi(x) to denote the crystalline eigenvalues on

Xcl, but be careful to realize that the function x 7→ φi(x) is nothing but a mapping of sets. Indeed,
we have that

vp(φi(x)) = κi(x) + vp(δi,x(p)).

Since δi : Q×p → A× is continuous, the second summand is locally constant on X. The first
summand, however, varies wildly as we just remarked, and thus φi(x) cannot possibly be continuous.

We now restrict our attention to a subset of the classical points.

Definition. We say that x ∈ Xcl is ϕ-regular if
(a) the φi(x) are distinct,
(b) the φi(x) satisfy φi(x) 6= pφj(x) if i < j, and
(c) the eigenvalue φ1(x) · · ·φi(x) is multiplicity one for ϕ acting on ∧iDcris(Dx).
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Remember, this is actually the second regularity hypothesis we have put on points in Xcl, the
first being that we have assumed that Dx has regular weight. Let us first prove a relatively easy
lemma.

Lemma 4.10. Suppose that x ∈ Xcl is ϕ-regular. Then, there exists an open affinoid U 3 x
such that for all u ∈ U and all integers r ∈ Z we have

H0(δj,uδ−1
i,u z

−r) = (0) = H2(δj,uδ−1
i,u z

−r)

whenever i 6= j.

Proof. Fix η := δjδ
−1
i z−r. By Corollary 4.7 it suffices to show that H2(ηx) = (0) = H0(ηx).

However, we know that

ηx = zκi(x)−κj(x)−r unr(φj(x)φi(x)−1).

The first assumption on the eigenvalues imply that ηx ∈ T̂g and thus Proposition 2.13 shows what
we want. �

Lemma 4.11. Suppose that x ∈ Xcl and choose a constant C > 0. Then, the set of points
Z :=

{
u ∈ Xnc

cl,C : u is ϕ-regular
}

accumulates at x.

Proof. Fix constants νi = vp(δi,x(p)). Since δi is continuous, we can find an open affinoid
subset U such that vp(δi,u(p)) = νi for all u ∈ U . Notice, if u ∈ Xcl ∩ U then

(4.5) vp(φi(u)) = κi(u) + νi.

Replacing C by C = max {C, 1 + |νi − νj | : 1 ≤ i, j ≤ n} it suffices by (RF4) to show that Xnc
cl,C ∩

U ⊂ Z. So, let us choose a point u ∈ Xnc
cl,C ∩U and go through the properties defining ϕ-regularity

for u.

(a) Suppose i 6= j but that φi(u) = φj(u). Thus (4.5) implies that κj(u)−κi(u) = νi− νj . On
the other hand, if u ∈ Xnc

cl,C then

C < |κj(u)− κi(u)| ,

a contradiction.
(b) If φi(u) = pφj(u) then we get the same contradiction.
(c) Suppose that there exists pairs of integers i1 < j1, . . . , is < js such that φi1(u) · · ·φis(u) =

φj1(u) · · ·φjs(u). By (4.5), we would get

sC <

s∑
k=1

(κjk(u)− κik(u)) =
s∑

k=1

(νik − νjk) ≤ sC,

a contradiction. Now, if φ1(u) · · ·φi(u) was not a simple eigenvalue we could, after cancel-
ing, find such pairs (ir, jr) for some r ≤ i.

This completes the proof. �

We now fix the context in which we will work. Our next step is to construct pointwise triangu-
lations near ϕ-regular classical points.

Proposition 4.12. Suppose that x ∈ Xcl is ϕ-regular. Then, there exists an open affinoid
U 3 x such that for all u ∈ U the (ϕ,Γ)-module Du has a unique triangulation Pu with an associated
parameter (zm1(u)δ1,u, . . . , z

mn(u)δn,u) and mi(u) ∈ Z. Further,
∑i

j=1mj(u) ≤ 0 for all 1 ≤ i ≤ n.

75



Proof. By Lemma 4.10, we can choose U to be an affinoid open subset of X such that for all
u ∈ U and all r ∈ Z we have

(4.6) H0(δj,uδ−1
i,u z

−r) = (0)

if i 6= j. Let Z := Xnc
cl ∩ U . Then, the subset Z is Zariski dense in U by the axiom (RF4).

Moreover, at each point z ∈ Z we know that Dz has a (unique, by (4.6)—see the next paragraph)
triangulation with ordered parameter (δ1,z, . . . , δn,z). Thus, the existence of such a triangulation is
the statement of [41, Theorem 6.2.14]. Indeed, in their notation please take M = D

∣∣
U

and Z = Z.
They don’t explicit mention the condition on the sign of

∑i
j=1mi(u) but it follows from the proof

of loc. cit.
Suppose there exists a triangulation P ′u with parameter (zm

′
1(u)δ1,u, . . . , z

m′n(u)δn,u) and we want
to show that m′i(u) = mi(u) for each i. For i = 1, we first note that (4.6) with r = mj(u)−mi(u)
says that if j > 1 then

Hom(ϕ,Γ)(RL(zm
′
1(u)δ1,u),RL(zmj(u)δj,u)) = (0).

In particular, any (ϕ,Γ)-equivariant inclusion RL(u)(zm
′
1(u)δ1,u) ↪→ Du must factor through the

submodule RL(u)(zm1(u)δ1,u). Since each of these submodules are meant to be saturated inside
Du we conclude that RL(u)(zm

′
1(u)δ1,u) ∼= RL(u)(zm1(u)δ1,u), i.e. m′1(u) = m1(u). If we assume by

induction that m′k(u) = mk(u) for k = 1, . . . , i − 1 then we necessarily have Pi−1,u = P ′i−1,u. Just
as before we have that if i 6= j then

Hom(ϕ,Γ)(RL(zm
′
i(u)δi,u),RL(zmj(u)δj,u)) = (0).

So, the saturated inclusion RL(u)(zm
′
i(u)δi,u) ⊂ Du/Pi−1,u must land inside the already saturated

submodule RL(u)(zmi(u)δi,u). Thus, mi(u) = m′i(u). as before. �

Remark. One could also deduce the result for x ∈ Xnc
cl by the proof of Theorem 4.13—

investigating the proof will show that the argument would not be circular.

With the previous result in mind, we now replace X by U as in Proposition 4.12. It is clear
that all the hypotheses on X still hold on U . Thus we may assume that we have associated to
each point x ∈ X a choice of triangulation which depends only on the initial data of the characters
(δ1, . . . , δn) and the set Xnc

cl .

Definition. Let x ∈ X. Then the triangulation Px given by Proposition 4.12 is called the
canonical triangulation with respect to the parameter (δ1, . . . , δn) and Xnc

cl . We write (δ̃1,x, . . . , δ̃n,x)
for the ordered parameter of Px.

Remark. We are aware that we have previously used the δ̃ notation to denote infinitesimal
deformations. However, they shall never appear in this chapter and so we feel comfortable reusing
the notation.

Notice that at points x ∈ Xcl we have an a priori different triangulation coming from the
ordering (φ1(x), . . . , φn(x)) of the Frobenius eigenvalues. In fact, the associated parameter, by
Proposition 2.21 is (z−s1(x) unr(φ1(x)), . . . , z−sn(x) unr(φn(x))). However, if x ∈ Xcl then by (RF2)
we know that δi,x is crystalline and thus of the form z−κi(x) unr(pκi(x)δi,x(p)) = z−κi(x) unr(φi(x)).
In particular, the triangulation coming from the ordering satisfies the conclusion of Proposition
4.12 and thus must itself be the canonical triangulation. In the notation above we have mi(x) =
κi(x)− si(x). Notice, as expected, that

i∑
j=1

mj(x) =
i∑

j=1

(κj(x)− sj(x)) ≤ 0.
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Let x ∈ Xcl and let Px be its canonical triangulation. We have defined in §2.3.1 what it means
for a step Pi,x to be non-critical. We now extend that to all of X.

Definition. Let x ∈ X and let Px be the canonical triangulation. We say that Pi,x is non-
critical if

δ1,x · · · δi,x = δ̃1,x · · · δ̃i,x.
We define the maximal non-critical parabolization P nc

x analogous to §2.3.1: we let

Inc
x = {i : Pi,x is non-critical} = {i1 < i2 < . . . < is}

and then define P nc as the parabolization

P nc
x : 0 ( Pi1,x ( Pi2,x ( · · · ( Pis,x = Dx.

We claim that this does not overwrite the previous definition. In fact, suppose that x ∈ Xcl.
Then, since Dx has regular Hodge-Tate weights, we know that κ1(x) + · · · + κi(x) is the lowest
possible value for the sum of any i weights. Thus, Lemma 2.24 says that a necessary and sufficient
condition for Pi,x to be non-critical is that s1(x) + · · ·+ si(x) = κ1(x) + · · ·+κi(x). However, since
δi,x = zsi(x)−κi(x)δ̃i,x, this is equivalent to the definition given above.

Further, analogous to the case of a finite Qp-algebra, we can define what it means to give a
parabolization of a (ϕ,Γ)-module over X.

Definition. We say that a filtration

P : 0 = P0 ( P1 ( · · · ( Ps = D

is a parabolization of D if each Pi is a (ϕ,Γ)-module over X and such that the quotients Pi/Pi−1

are finite projective RX-modules.

If P is a parabolization then since the associated gradeds are projective over X, we know that
we can specialize at a point x ∈ X and get a parabolization

P ⊗A L(x) : 0 = P0 ⊗A L(x) ( P1 ⊗A L(x) ( · · · ( Ps ⊗A L(x) = Dx

over the residue field. We are now ready to state the main theorem.

Theorem 4.13. Suppose that x ∈ Xcl is ϕ-regular. Then, there exists an open affinoid U 3 x
and a parabolization P nc of D over U such that

(a) P nc ⊗A L(x) = P nc
x , and

(b) P nc ⊗A L(u) is a parabolization of Du which is contained in P nc
u .

Notice that in order to define the canonical triangulations Pu we have already “shrunk” X from
the beginning of the chapter. It is entirely possible that we still must shrink X more. That is, it
is not enough to just construct the pointwise triangulations.

4.2.2. Upper semi-continuity of non-critical parabolizations. Before we prove Theo-
rem 4.13, we are going to explain a sort of upper semi-continuity of the maximal non-critical
parabolizations. The result that we want to prove in this subsection is the following.

Proposition 4.14. Suppose that x ∈ Xcl is ϕ-regular and suppose that Pi,x is non-critical.
Then Pi,u is also non-critical for all u in some open affinoid neighborhood around x.

We remark that it is a formal corollary of the theorem, but we will also use it to significantly
shorten the proof of Theorem 4.13 in the minimally critical case. Further, it is psychologically
important (for the author, at least) to understand this kind of basic result from the beginning.
Finally, we also justify the short detour as the computations below will be used in Chapter 5.
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The proof will follow from a series of lemmas. For notation, we define

∆i := δ1 · · · δi.
This is a continuous character ∆i : Q×p → A×. We have as well, for each x ∈ X, a continuous
character

∆̃i,x := δ̃1,x · · · δ̃i,x : Q×p → L(x)×.

In general, we don’t expect ∆̃i,x to be the evaluation of a character ∆̃i at x so the notation is
only meant to be suggestive. But, for example we see that Pi,x is non-critical on X if and only if
∆̃i,x = ∆i,x. We first make some simple calculations at classical, non-critical points.

Lemma 4.15. Suppose that x ∈ Xcl is ϕ-regular and that Pi,x is non-critical. Then

dimL(x)H
j
(

(∧iDx/t)(∆−1
i,x )
)

=

{
1 if j = 0 or j = 1
0 if j = 2.

and

dimL(x)H
j
(
∧iDx(∆−1

i,x )
)

=


1 if j = 0
1 +

(
n
i

)
if j = 1

0 if j = 2.
and

dimL(x)H
j
(
t ∧i Dx(∆−1

i,x )
)

=


0 if j = 0(
n
i

)
if j = 1

0 if j = 2.

Proof. Let m := rankRL(x)
∧iDx =

(
n
i

)
. Choose any parameter (η1, . . . , ηm) of ∧iDx with

the property that η1 = δ̃1,x · · · δ̃i,x = ∆i,x and wt(ηq∆−1
i,x ) ≥ 1 for any q ≥ 2. By induction and

Proposition 2.14 that
H0
(
RL(x)/t

) ∼= H0
(

(∧iDx/t)(∆−1
i,x )
)

is one-dimensional. Together with the Euler-Poincaré-Tate characteristc formula (Proposition 2.16)
we get the first computation.

We do the next two computations at the same time. We claim that that for q ≥ 2, the characters
ηq∆−1

i,x and zηq∆−1
i,x are generic in the sense of §2.2.2. That being done, the computations follows

from Lemma 2.28. We now prove the claim. Since wt(ηq∆−1
i,x ) ≥ 1 it suffices to show that neither

ηq∆−1
i,x nor zηq∆−1

i,x of the form z−k for k ≥ 0. We can actually deduce the same with any k ∈ Z.
So, assume that ηq∆−1

i,x = z−k. We see that

(4.7) pwt ηqηq(p) = pk+wt ∆i,xp−k∆i,x(p) = pwt ∆i,x∆i,x(p) = φ1(x) · · ·φi(x).

By the dictionary Proposition 2.21 this would imply that φ1(x) · · ·φi(x) is not a simple eigenvalue
on Dcris(∧iDx), contradicting that x is ϕ-regular. �

Lemma 4.16. Suppose that x ∈ Xcl is ϕ-regular and Pi,x is non-critical. Then, the modules
Hj(∧iD/t(∆−1

i )), Hj(∧iD(∆−1
i )) and Hj(t ∧i D(∆−1

i )) are all locally free and satisfy base change
near x.

Proof. Notice that Lemma 4.15 applies to all the ϕ-regular points in Xnc
cl . By Lemma 4.11,

such points accumulate at x. In particular, we can apply Corollary 4.8 to deduce the result. Note
that Tor-group hypothesis is valid there as ∧iD and ∧iD/t are each flat over X (the latter by [41,
Corollary 2.1.7]). �
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We are now in position to finish the proof of Proposition 4.14.

Proof of Proposition 4.14. Suppose that x ∈ Xcl is ϕ-regular. By Lemma 4.16 we can
assume that H0(∧iD(∆−1

i )) and H0(∧iD/t(∆−1
i )) are each locally free of rank one and satisfy base

change. Thus, there is a unique (up to A×) morphism

(4.8) α : RU (∆i) ↪→ ∧iD
∣∣
U

of (ϕ,Γ)-modules over U .
Let u ∈ U and consider the specialization

RL(u)(∆i,u) αu−→ ∧iDu.

By construction we have that αu is a non-zero element in the one-dimensional L(u)-vector space
Hom(ϕ,Γ)(∆i,u,∧iDu). On the other hand, we also know that the submodule RL(u)(∆̃i,u) ⊂ ∧iDu

is saturated. Note that by Proposition 4.12, we have ∆̃i,u∆−1
i,u = zm1(u)+···+mi(u) ∈ T̂+. Thus,

Proposition 2.13 implies that the natural inclusion

Hom(ϕ,Γ)(RL(∆i,u),RL(∆̃i,u)) ↪→ Hom(ϕ,Γ)(RL(∆i,u),∧iDu)

is an equality for dimension reasons. In particular, αu factors through RL(∆̃i,u). In order to show
∆i,u = ∆̃i,u it now suffices to show that coker(αu) is free over RL(u), i.e. im(αu) is saturated.

Since Hj(t ∧i D(∆−1
i )) satisfies base change near x for each j (by Lemma 4.16 again) and

vanishes for j = 0, we have an inclusion

Hom(ϕ,Γ)

(
RL(u)(∆i,u),∧iDu

)
⊂ Hom(ϕ,Γ)

(
RL(u)(∆i,u),∧iDu/t

)
.

Since each is one-dimensional, we have equality and we see that the composition

RL(u)(∆i,u) αu−→ ∧iDu → (∧iDu)/t

is non-zero. Thus im(αu) is saturated inside ∧iDu by Corollary 2.8. �

Remark. It is important that the term H1(t∧iD(∆−1
i )) satisfies base change. In fact, without

that we could envision that H0(t ∧i D(∆−1
i )) = (0) but that H0(t ∧i Du(∆−1

i,u)) 6= 0 for some u.

4.3. Proof of the main theorem

In this section we prove Theorem 4.13, in three separate settings. We do this only as a matter of
clarity, not out of logical necessity. In fact, the reader only interested in the whole proof is invited
to skip ahead to §4.3.3 and read the proof there.

4.3.1. Proof of Theorem 4.13 in the non-critical case. We now prove Theorem 4.13
in the non-critical case. In the non-critical case, our proof closely follows ideas presented in [41,
Theorem 6.2.9] but with a view towards regularity hypotheses and allowing ourselves to shrink X
as necessary. This also gives a new proof of Proposition 4.12 in a neighborhood of any ϕ-regular
non-critical point classical point.

Suppose that x ∈ Xnc
cl is a ϕ-regular point. Let Px be the canonical triangulation. By Propo-

sition 4.14 we can, and do, suppose that Pi,u is non-critical for all u ∈ X and all 1 ≤ i ≤ n.

Lemma 4.17. There exists an open affinoid U ⊂ X and a parabolization P1 ( D over U such
that P1 ⊗A L(u) ∼= P1,u for all u ∈ U .
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Proof. Since P1,x is non-critical, Lemma 4.16 implies that there exists a U 3 x and an em-
bedding

α : RU (δ1) ↪→ D
∣∣
U

such that im(αu) 6⊂ tDu for any u ∈ U . After possibly shrinking U further (by Lemma 4.10) we
necessarily have that im(αu) is the saturated submodule P1,u ⊂ Du.

ConsiderQ1 := coker(α). It follows then thatQ1,u = coker(αu) is the (ϕ,Γ)-moduleDu/RL(u)(δ1,u)
over RL(u) of rank n − 1. By Corollary 1.4 we see that Q1 is projective as a RU -module. Let
P1 := im(α). Since Q1 is projective, P1 ⊗A L(u) ↪→ Du and defines a saturated submodule con-
tained in im(αu). Thus, it must be equal to im(αu) and we have proven the statement. �

Following the lemma we can now proceed to prove Theorem 4.13 by induction rankRX D. The
key point here is that we have an exact sequence

0→ P1 → D → Q1 → 0

where Q1 is a (ϕ,Γ)-module over RX . It is easy to see Q1 forms a refined family over X and if x
was non-critical and ϕ-regular with respect to D, it is still non-critical and ϕ-regular with respect
to Q1. Thus the induction hypothesis can be applied to Q1 and we obtain the triangulation of D
on an affinoid neighborhood of x.

4.3.2. Proof of Theorem 4.13 in the minimally critical case. With the non-critical case
done, we move on to a slightly more difficult case. Note that away from the non-critical locus one
sees immediately the obstruction to carrying out the proof of §4.3.1 is that one need not know that
it need not be true coker(P1 → D) is projective over RX (in the notation above). The next two
subsections deal with how to get around that issue.

We give the proof in the special case below for two reasons. First, it gives a more concrete
version of the proofs in the next section. Second, it is a uniform condition on the triangulation Px
for which the computations in §3.3.2 can be applied.

Definition. Suppose that x ∈ Xcl with canonical parabolization Px. We say that x is minimally
critical if rankRL(x)

Grj P nc
x ≤ 2 for each j.

Remark. A point x ∈ Xcl is minimally critical if and only if si(x) is in the set {κi−1(x), κi(x), κi+1(x)}
for each i ≥ 2 and s1(x) ∈ {κ1(x), κ2(x)}.

Example 4.18. Let rankRL(x)
Dx = 3. IfDx is indecomposable, every triangulation is minimally

critical (see the explanation in Proposition 3.40). On the other hand, if Dx is completely split with
distinct crystalline eigenvalues then three among the six possible triangulations are minimally
critical.

We now begin the proof of Theorem 4.13. We will have to redo some of the computations
we had previously made but with a view towards keeping track of torsion. The following lemma
will also be used in the next section (it is Lemma 4.15 with i = 1—the non-critical hypothesis is
unnecessary in this case).

Lemma 4.19. If x ∈ Xcl is ϕ-regular then

dimL(x)H
j(Dx(δ−1

1,x)) =


1 if j = 0,
n+ 1 if j = 1,
0 if j = 2.

Proof. Recall that the canonical triangulation has a parameter (δ̃1,x, . . . , δ̃n,x) such that δ̃1,x =
z−mδ1,x with m ≥ 0. On the other hand, Lemma 4.10 implies that if j > 1 then δ̃j,xδ

−1
1,x is generic

and thus the computation follows from Lemma 2.28. �
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Fix now a point x ∈ Xcl which is ϕ-regular and minimally critical. Without loss of generality
we can assume that at the point x we have that P1,x is critical but that P2,x is not. Indeed, if
P1,x is non-critical then just apply Lemma 4.17 until the point where P1,x becomes critical. By
the discussion proceeding Proposition 4.12, we have that δ̃i,x = zκi(x)−si(x)δi,x. Thus since P1,x is
critical but P2,x is not, we have that

δ̃1,x = zκ1(x)−κ2(x)δ1,x, and

δ̃2,x = zκ2(x)−κ1(x)δ2,x.

Moreover, by the upper semi-continuity of non-critical parabolizations (Proposition 4.14), we can
assume that P2,u is non-critical for every point u ∈ X. Thus, for every point u ∈ X we have

(4.9) δ1,uδ2,u = δ̃1,uδ̃2,u.

This assumption will remain in force, it will appear explicitly in the proof of Lemma 4.22.
Continuing on, Lemma 4.19 implies that the dimension of the cohomology groups Hj(Dx(δ−1

1,x))
agree with the dimension of the cohomology groups Hj(Du(δ−1

1,u)) for all ϕ-regular points u ∈ Xnc
cl ,

computed by Lemma 4.15. Since such points accumulate at x, by Lemma 4.11, we deduce by
Corollary 4.8 that after shrinking X we can assume that each cohomology space Hj(D(δ−1

1 )) is free
and satisfies base change. Their ranks are computed by Lemma 4.19. With this in mind, we can
choose an A-basis

α1 : RX(δ1)→ D

for Hom(ϕ,Γ)(RX(δ1), D) = H0(D(δ−1
1 )). Denote, as before, the cokernel as Q1. By Lemma 4.10

we may assume that H0(Du(δ−1
1,u)) ∼= H0(δ̃1,uδ

−1
1,u) for all u ∈ X.

Let u ∈ X. Since H0(D(δ−1
1 )) satisfies base change, our previous comment implies that α1,u is

injective for all u and

Q1,u = coker
(
RL(u)(δ1,u) = tm1(u)RL(u)(δ̃1,u)→ Du

)
.

Thus, Lemma 1.11 implies that we have a short exact sequence

(4.10) 0→ RX(δ1) α1−→ D → Q1 → 0.

Using again that α1,u is injective for each u we deduce that

(4.11) TorXj (Q1, L(u)) = (0) (if j ≥ 1).

Recall that we defined the integer m1(u) in Proposition 4.12. We have that m1(u) ≤ 0 and that
m1(u) = 0 if and only if P1,u is non-critical. In general now, for u ∈ X, we have a short exact
sequence of generalized (ϕ,Γ)-modules over RL(u)

(4.12) 0→ RL(u)(δ̃1,u)/tm1(u) → Q1,u → Du/P1,u → 0.

Consider again our fixed point x ∈ Xcl which is ϕ-regular and minimally critical. From now
on, we let M := κ2(x)− κ1(x) = −m1(x) and consider the continuous character zMδ2 : Q×p → A×.
Notice that

(zMδ2)x = zκ2(x)−κ1(x)δ2,x = δ̃2,x.

Lemma 4.20. We have

Hj(Q1,x(δ̃−1
2,x)) =


1 if j = 0,
n if j = 1,
0 if j = 2.

81



Proof. It suffices by the long exact sequence in cohomology attached to (4.12) at u = x to
show

(i) H0(RL(u)(δ̃1,xδ̃
−1
2,x)/tM ) = (0), and that

(ii) Du/P1,u is almost generic in the sense of Lemma 2.28 with respect to the parmeter (δ̃2,x, δ̃3,x, . . . , δ̃n,x).
Indeed, by (i) and local Tate duality (Proposition 2.16) We have that the canonical maps

Hj(Q1,x(δ̃−1
2,x))→ Hj(Dx/P1,x(δ̃−1

2,x))

are all isomorphisms. The dimensions then follow from (ii). To prove (i), notice that wt(δ̃1,xδ̃
−1
2,x) =

M . Thus, our claim follows from Proposition 2.14. The second statement then follows because x
is ϕ-regular (see Lemma 4.10). �

Lemma 4.21. For each j, Hj(Q1(z−Mδ−1
2 )) is locally free near x and satisfies base change. For

j = 0 it is locally free of rank one.

Proof. We just computed the value of

(4.13) u 7→ dimL(u)H
j(Q1,u(z−Mδ−1

2,u))

at the point u = x in Lemma 4.20. Notice as well that by construction, Q1 is a finitely presented
generalized (ϕ,Γ)-module in the sense of Proposition 4.1. Thus, we have available the cohomology
and base change formalism of §4.1.3. To finish the proof it suffices, by (4.11) and Corollary 4.8, to
show that there exists a neighborhood U of x and a Zariski dense subset of points u ∈ U for which
(4.13) attains the same values as it did for x.

Consider any ϕ-regular point u ∈ Xnc
cl . The parameter of the canonical triangulation is

(δ1,u, . . . , δn,u). Since P1,u is non-critical, the short exact sequence (4.12) has no torsion submodule
and Q1,u

∼= Du/P1,u. Moreover the (ϕ,Γ)-module Q1,u(z−Mδ−1
2,u) is almost generic, by Lemma

4.10, with respect to the parameter (z−M , δ3,uz
−Mδ−1

2,u, . . . , δn,uz
−Mδ−1

2,u). Thus we compute its
cohomology, by Lemma 2.28. Since M ≥ 0, we get

dimL(u)H
0(Q1,u(z−Mδ−1

2,u)) = dimL(u)H
0(z−M ) = 1.

We have finished the proof. �

Following Lemma 4.21, we can shrink X and choose a basis

α2 : RX(zMδ2)→ Q1

for Hom(ϕ,Γ)(RX(zMδ2), Q1). Notice that for each u ∈ Xnc
cl , α2,u is the inclusion tMRL(δ2,u) ↪→

Du/P1,u. Thus, by Lemma 1.11 we know that α2 is injective. Denote the cokernel by Q′2, so that
we have a short exact sequence

(4.14) 0→ RX(zMδ2) α2−→ Q1 → Q′2 → 0.

What are the possible base changes of α2? For each u ∈ X, we have a long exact sequence

0→ Hom(ϕ,Γ)

(
RL(u)(z

Mδ2,u),RL(u)(δ̃1,u)/tM
)
→ H0(Q1,u(z−Mδ−1

2,u))→ · · ·

· · · → H0
(
Du/P1,u(z−Mδ−1

2,u)
)
→ H1

(
RL(u)(δ̃1,u)/tM (z−Mδ−1

2,u)
)
→ · · · .

attached to (4.12). Since we also know that dimL(u)H
0(Q1,u(z−Mδ−1

2,u)) = 1 and α2 arises from
base change, we get that for each u, α2,u arises as a one of two compositions:

(4.15) α2,u : RL(u)(z
Mδ2,u)→ [Q1,u]tor ↪→ Q1,u,
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or

(4.16) α2,u : RL(u)(z
Mδ2,u) ↪→ RL(u)(δ̃2,u).

Notice that at u = x we are in the second case, along with all the non-critical points (because Q1,u

has no torsion there). In fact, we can assume that we are always in the situation (4.16). To see
this, consider the sequence

0→ RX(zMδ2)[1/t]
α2[1/t]−→ Q1[1/t]→ Q′2[1/t]→ 0

of RX [1/t]-modules. We can see explicitly that for all u ∈ X the fiber of each term is free over
RL(u)[1/t]. Thus, the function u 7→ rankRL(u)[1/t]Q

′
2[1/t] is upper semi-continuous on X by Propo-

sition 1.3 and after shrinking X we can remove the case (4.15). Actually, after knowing that the
base change α2,u is of the form (4.16) we also deduce (recall (4.11)) that

(4.17) TorXj (Q′2, L(u)) = (0) (if j ≥ 1).

We now prove the following key lemma.

Lemma 4.22. After possibly shrinking X further, we can assume that Q′2/t
M is free over

RX/tM .

Proof. Since H0(Q1(z−Mδ−1
2 )) is locally free of rank one and satisfies base change we see that

if u is a non-critical point sufficiently close to x then there is a short exact sequence

0→ RL(u)(δ2,u)/tM → Q′2,u → Du/P2,u → 0.

On the other hand, by construction α2,x factors the inclusion RL(x)(δ̃2,x) ↪→ Dx/P1,x:

RL(x)(zMδ2,x)
α2,x

// Q1,x

��

RL(x)(δ̃2,x) // Dx/P1,x

Thus, there is a short exact sequence

0→ RL(x)(δ̃1,x)/tM → Q′2,x → Dx/P2,x → 0.

In particular, the function

(4.18) u 7→ rankRL(u)/tQ
′
2,u/t

has a local minimum at the point u = x. It follows from Proposition 1.3 that after shrinking X we
can assume that (4.18) is constant (and equal to n− 1) on X. We now claim that

(4.19) u 7→ rankRL(u)/tQ
′
2,u/t

M

is constant on X as well. Indeed, consider the base change map α2,u again and recall that we
have shown that it must be of the form (4.16). As a module over RL(u) (but not necessarily
(ϕ,Γ)-equivariantly) we have

(4.20) Q′2,u
∼= RL(u)(δ̃1,u)/RL(u)(δ1,u)⊕RL(u)(δ̃2,u)/RL(u)(z

Mδ2,u)⊕Du/P2,u.

In order for Q′2,u/t to be free of rank n−1 over RL(u)/t we must have either δ̃1,u = δ1,u (so that the
first summand disappears) or δ̃2,u = zMδ2,u (so the second summand vanishes). Now, we finally
use our assumption that every point in u ∈ X has P2,u is non-critical (recall (4.9)). If δ̃1,u = δ1,u

then δ̃2,u = δ2,u and we see clearly see that Q′2,u/t
M is free over RL(u)/t

M . On the other hand,
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if δ̃2,u = zMδ2,u then δ1,u = zM δ̃1,u and we get the same result. Now that we see that (4.19) is
constant we deduce that Q′2/t

M is (locally near x) free over RX/tM by Corollary 1.4. �

We next consider the exact sequence

0→ Q′2[tM ]→ Q′2
tM−→ Q′2 → Q′2/t

M → 0.

By Lemma 4.22, the quotient is free over RX/tM . In particular, since RX/tM is flat over X (by
[41, Corollary 2.1.7]), so is Q′2/t

M . By (4.17) and Corollary 4.4 we then deduce that the natural
map Q′2[tM ]u → Q′2,u[tM ] is an isomorphism.

Now define
Q2 = coker

(
Q′2[tM ]→ Q′2

)
.

Note that Q′2[tM ]u =
[
Q′2,u

]
tor

because either δ1,u = zM δ̃1,u or δ̃2,u = zMδ2,u. Thus, we see that
Q2,u

∼= Du/P2,u. In particular, Q2,u is finite projective over RL(u) and of rank independent of u.
We then conclude that Q2 is finite projective over RX by Corollary 1.4. Notice as well that the
natural map D → Q2 is surjective as it is defined by a composition of surjections. Finally, we let
P2 denote the kernel of this natural map, i.e.

0→ P2 → D → Q2 → 0.

Since Q2 is finite projective over X we deduce that

P2 ⊗X L(u) = (kerDu → Q2,u) = P2,u.

Thus, again by Corollary 1.4, we deduce that P2 is finite projective and, moreover, P2 ⊗X L(u) =
P2,u.

4.3.3. Proof of Theorem 4.13 at arbitrary classical points. Here we are going to give
the general proof of Theorem 4.13. So, we fix a point x ∈ Xcl which is ϕ-regular. We are going
to introduce (though we could’ve introduced it in the previous section, probably) the following
notation and keep it in force throughout this section.

Definition. Let L be a p-adic field and Q a generalized (ϕ,Γ)-module over RL. If (Q1, . . . , Qs)
is an ordered list of generalized (ϕ,Γ)-modules over RL then we write

Q
Gr∼=

s⊕
i=1

Qi

if the following two conditions hold:
(a) Q ∼=

⊕s
i=1Qi as an RL-module, and

(b) there exists a (ϕ,Γ)-equivariant filtration 0 = F0 ( F1 ( · · · ( Fs = Q such that

Gri F• ∼= Qi,

for i = 1, . . . , s.

Example 4.23. If Dx is the (ϕ,Γ)-module at the point x then Dx

Gr∼=
⊕s

i=1RL(x)(δ̃i,x).

The proof of Theorem 4.13 in the most general case relies on an explicit inductive construction
that will take some time to explain, but which is ultimately elementary in nature. Fix an integer
r with 1 ≤ r ≤ n such that Pr,x is non-critical but Pi,x is critical for 1 ≤ i ≤ r − 1. Recall
that the numbers s1(x), . . . , sn(x) are defined as the list of weights ordered from the parameter
(δ̃1,x, . . . , δ̃n,x). Out of the number r we can generate an integer e ≥ 1 along with sequences of
integers

1 ≤ j1 < . . . < ja−1 < ja = r
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and
1 = i1 < i2 < · · · < ia−1 < ia < r

by declaring (with the convention that j0 = 0)

sjb+1
(x) = min {sjb+1(x), . . . , sr(x)} (b = 0, . . . , a− 1),

κib(x) = sjb(x0) (b = 1, . . . , a).

Notice that the final equality (resp. inequality) in the listing of the ja (resp. ia) follows from the
choice of r. It is best to understand these sequences through an example.

Example 4.24. Let n = 5 and suppose (si(x)) = (κ5(x), κ2(x), κ1(x), κ3(x), κ4(x)). Then, we
get

(j1, j2, j3) = (3, 4, 5) and (i1, i2, i3) = (1, 3, 4).
On the other hand, if (si(x)) = (κ4(x), κ5(x), κ1(x), κ3(x), κ2(x)) then

(j1, j2) = (3, 5) and (i1, i2) = (1, 2).

The choice of r also implies we have the following numerical relation.

Lemma 4.25. For b = 1, . . . , a we have κib(x) ≤ κjb−1
(x).

Proof. Suppose that κib(x) = sjb(x) > κjb−1
(x). Then, by definition of jb we have that each

of sjb−1+1(x), sjb−1+2(x), . . . , sr(x) is larger than κjb−1
(x). By the choice of r, the set{

sjb−1+1(x), . . . , sr(x)
}

of r − jb−1 − 1 weights would have to come from the set{
κjb−1+1(x), . . . , κr(x)

}
of r − jb − 1 weights. Complementary to this, the set of weights

{
s1(x), . . . , sjb−1

(x)
}

is the set
of lowest jb−1 weights

{
κ1(x), . . . , κjb−1

(x)
}

. Since this implies (by Lemma 2.24) that Pjb−1,x is
non-critical, we contradict the definition of r. �

The inductive construction we alluded to above is contained in the following proposition. After
the statement, we prove the theorem and finally go back and prove the proposition. We use the
convention that ia+1 = r.

Proposition 4.26. After shrinking X there exists a sequence of quotients

D � Q′1 � Q1 � · · ·� Q′a � Qa

of generalized (ϕ,Γ)-modules over X such that if 1 ≤ b ≤ a then:
(a) For every point u ∈ X, TorX1 (Q′b, L(u)) = (0) = TorX1 (Qb, L(u)) and

Q′b,u/
[
Q′b,u

]
tor
∼= Qb,u/ [Qb,u]tor

∼= Du/Pjb,u.

(b) At the point u = x we have

Q′b,x
Gr∼=

 ⊕
1≤i≤jb

κib (x)<si(x)

RL(x)(δ̃i,x)/tsi(x)−κib (x)

⊕Dx/Pjb,x, and

Qb,x
Gr∼=

 ⊕
1≤i≤jb

κib+1
(x)<si(x)

RL(x)(δ̃i,x)/tsi(x)−κib+1
(x)

⊕Dx/Pjb,x.
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(c) Finally, for a subset of points u ∈ Xcl accumulating at x, we have

Q′b,u
Gr∼=

 jb⊕
i=ib+1

RL(u)(δi,u)/tκi(x)−κib (x)

⊕Du/Pjb,u, and

Qb,u
Gr∼=

 jb⊕
i=ib+1

RL(u)(δi,u)/tκi(x)−κib+1
(x)

⊕Du/Pjb,u.

Moreover,
rankRL(u)/tQ

′
b,u/t = rankRL(x)/tQ

′
b,x/t.

and
1 + rankRL(u)/tQb,u/t = rankRL(x)/tQb,x/t.

Note that in (c), the xs appearing in tκi(x)−κib (x) are not a typo. With the proposition in mind,
we give the proof of the main theorem.

Proof of Theorem 4.13. We adopt the notation of Proposition 4.26. If we take b = a then
jb = r. Since κia+1 = κr, the formulas imply that Qa,u is a (ϕ,Γ)-module of rank n−r for u = x and
for u in a set of classical points accumulating at x. Thus, Corollary 1.4 implies that Qa is a (ϕ,Γ)-
module over some open affinoid subdomain U ⊂ X containing x. If we define Pr := ker(D � Qa)
then for each u ∈ U we have (by (a)) a short exact sequence

0→ Pr ⊗X L(u)→ Du → Du/Pr,u → 0.

Thus Pr ⊗X L(u) ∼= Pr,u is a (ϕ,Γ)-module over RL(u) of rank r, for each u ∈ U . Again, by
Corollary 1.4, we have then that Pr is a (ϕ,Γ)-module over U and the conditions of Theorem 4.13
are satisfied. The proof now easily follows by induction on n = rankRX D. �

Remark. As the reader might notice, we used all the information from the proposition at b = a
except the final statement about the ranks of the torsion modules. That information is only used
to keep the inductive process moving along.

The rest of the section will be dedicated to giving the proof of the proposition. To simplify the
exposition we are going to make a definition and then prove an easy lemma.

Definition. Let L be a p-adic field and δ : Q×p → L× a continuous character and N ≥ 1 be
an integer. We then define

wt
(
RL(δ)/tN

)
:= wt(δ)−N.

If S is now a generalized torsion (ϕ,Γ)-module then we say that S has constant weight w if

S
Gr∼=

s⊕
i=1

Si

for torsion (ϕ,Γ)-modules Si ∼= RL(δi)/tNi of weight w = wt(Si).

We should note wt
(
RL(δ)/tN

)
depends on the torsion (ϕ,Γ)-module RL(δ)/tN only up to

isomorphism, by Proposition 2.14. Thus the definition makes sense.

Example 4.27. If Q′b,x is as the statement of Proposition 4.26 then
[
Q′b,x

]
tor

has constant

weight κib(x).

The following lemma will be used frequently in the inductive process.
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Lemma 4.28. Let L be a p-adic field and suppose that Q is a generalized (ϕ,Γ)-module over
RL whose torsion submodule Qtor has constant weight w. If η is any character such that either
wt(η) /∈ Z or wt(η) ≤ w then H i(Q(η−1)) = H i(Qfree(η−1)) for all i.

Proof. By the Euler-Poincaré-Tate characteristic formula (Proposition 2.16) for torsion mod-
ules and the definition of constant weight w, it suffices to show H0(S(η−1)) = (0) if S is a
pure torsion (ϕ,Γ)-module of weight w. However, if S = RL(δ)/tN with either wt(η) /∈ Z or
wt(η) ≤ w = wt(δ)−N then Proposition 2.14 verifies this. �

We now carry out the inductive construction in Proposition 4.26. The construction is by
induction on a. If we take b = 0 with jb = 0 then the formulas are all true with Q′0 = Q0 = D. Thus,
that is our base case. Suppose 1 ≤ b ≤ a and that we have constructed Q′1, Q1, . . . , Q

′
b−1, Qb−1.

The following lemma gives the construction of Qb.

Lemma 4.29. After shrinking X, there exists generalized (ϕ,Γ)-modules

Qb−1 = Q
′(0)
b � Q

′(1)
b � · · ·� Q

′(jb−jb−1)
b =: Q′b

over X such that if 0 ≤ c ≤ jb − jb−1 then we have the following.

(a) For all u ∈ X, TorX1 (Q′(c)b , L(u)) = (0) and

Q
′(c)
b,u /

[
Q
′(c)
b,u

]
tor

∼= Du/Pjb−1+c,u.

(b) At the point x we have

Q
′(c)
b,x

Gr∼=

 jb−1+c⊕
i=1

κib (x)<si(x)

RL(x)(δ̃i,x)/tsi(x)−κib (x)

⊕Dx/Pjb−1+c,x.

(c) For a set of points u ∈ Xnc
cl accumulating at x we have

Q
′(c)
b,u

Gr∼=

jb−1+c⊕
i=ib+1

RL(u)(δi,u)/tκi(x)−κib (x)

⊕Du/Pjb−1+c,u.

Moreover,
rankRL(u)/tQ

′(c)
b,u /t = rankRL(x)/tQ

′(c)
b,x /t− 1

unless c = jb − jb−1, in which case we have rankRL(u)/tQ
′
b,u/t = rankRL(x)/tQ

′
b,x/t.

Proof. The proof is by induction on c = 0, 1, . . . , jb − jb−1. The case of c = 0 is the inductive
hypothesis on Qb−1. So, we suppose that c > 0 and by induction we have constructed Q

′(c−1)
b .

Notice that
[
Q
′(c−1)
b,x

]
tor

is a torsion (ϕ,Γ)-module of constant weight κib(x) in the sense above.

Since wt(zκjb−1+c(x)−κib (x)δjb−1+c,x) = κib(x), Lemma 4.28 and the inductive hypothesis together
imply that

(4.21) H i
(
Q
′(c−1)
b,x (zκib (x)−κjb−1+c(x)δ−1

jb−1+c,x)
)

= H i(Dx/Pjb−1+c−1,x(zκi(x)−κjb−1+c(x)δ−1
jb−1+c,x)).

for i = 0, 1, 2. Next, the (ϕ,Γ)-module Dx/Pjb+c−1,x is a trianguline (ϕ,Γ)-module over RL(x) with

parameter
(
δ̃jb−1+c,x, . . . , δ̃n,x

)
. Since x is ϕ-regular we see by Lemma 4.10 that the quotient

Dx/Pjb−1+c−1,x(zκi(x)−κjb−1+c(x)δ−1
jb−1+c,x)

87



is almost generic in the sense of Lemma 2.28. Thus the cohomology groups appearing in (4.21) are
completely determined by

H0(δ̃jb−1+c,xz
κib (x)−κjb−1+c(x)δ−1

jb−1+c,x) = H0
(
zκib (x)−sjb−1+c(x)

)
.

Now, recall the definition of ib is that

κib(x) = min
{
sjb−1

(x), . . . , sjb(x)
}

= min
0≤c≤jb−jb−1

{
sjb−1+c(x)

}
.

Thus κib(x)− sjb−1+c(x) ≤ 0 and we conclude by Lemma 2.28 that

dimL(x)H
i
(
Q
′(c−1)
b,x (zκib (x)−κjb−1+c(x)δ−1

jb−1+c,x)
)

=


1 if i = 0,
1 + rankRL(x)

Dx/Pjb−1+c−1,x if i = 1,
0 if i = 2.

We now show that the dimensions above are the minimal possible dimensions near x by showing
they agree with sufficiently general points u ∈ Xnc

cl accumulating at x. Let u ∈ Xnc
cl and consider

the space

H0
(
Q
′(c−1)
b,u (zκib (x)−κjb−1+c(x)δ−1

jb−1+c,u)
)

By induction we have that

(4.22) H i
([
Q
′(c−1)
b,u

]
free

(zκib (x)−κjb−1+c(x)δ−1
jb−1+c,u)

)
= H i

(
Du/Pjb−1+c(z

κib (x)−κjb−1+c−1(x)δ−1
jb−1+c,u)

)
.

for i = 0, 1, 2. By Lemma 4.25 we know that κib(x) ≤ κjb−1+c(x) for c ≥ 0, with a strict inequality
for c ≥ 1. Thus, we have

dimL(u)H
0(zκib (x)−κjb−1+c(x)) = 1.

Moreover, if u ∈ Xnc
cl is ϕ-regular, this space determines the cohomology spaces appearing in (4.22)

(just as above, via Lemma 2.28). Thus in order to show that

(4.23) dimL(x)H
i
(
Q
′(c−1)
b,x (zκib (x)−κjb−1+c(x)δ−1

jb−1+c,x)
)

= dimL(u)H
i
(
Q
′(c−1)
b,u (zκib (x)−κjb−1+c(x)δ−1

jb−1+c,u)
)

for a set of points u ∈ Xnc
cl accumulating at x and i = 0, 1, 2, it suffices to show that there is some

set on which we have

(4.24) H0
([
Q
′(c−1)
b,u

]
tor

(zκib (x)−κjb−1+c(x)δ−1
jb−1+c,u)

)
= (0).

Let Z be the set of points u ∈ Xnc
cl which are ϕ-regular and which satisfy

(4.25) κi(u)− κjb−1+c(u) < κib(x)− κjb−1+c(x),

for i = ib+1, . . . , jb−1 +c−1. Notice that the left hand side is negative because we take i < jb−1 +c.
Thus, by Lemma 4.11 we know that Z accumulates at the point x. Next, note that if u ∈ Z then
(4.24) follows immediately from Proposition 2.14 and the inductive hypothesis[

Q
′(c−1)
b,u

]
tor

Gr∼=
jb−1+c−1⊕
i=ib+1

RL(u)(δi,u/t
κi(x)−κib (x)).
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Summarizing, (4.23) holds on the set Z accumulating at x and thus the functions

u 7→ dimL(u)H
i(Q′(c−1)

b,u (zκib (x)−κjb−1+c(x)δ−1
jb−1+c,u)

have local minimums at the point u = x. By induction TorXj (Q′(c−1)
b , L(u)) = 0 on X and thus

Corollary 4.8 implies that after shrinking X (and replacing Z by its intersection, which is still
accumulating at x) we can assume that

H0(Q′(c−1)
b (zκib (x)−κjb−1+c(x)δ−1

jb−1+c))

is free of rank one and satisfies base change. We choose a basis element

α : tκjb−1+c(x)−κib (x)RX(δjb−1+c)→ Q
′(c−1)
b

for this space.
By shrinking X even further, we may also assume that the base change αu is injective and

factors the natural inclusion RL(u)(δ̃jb−1+c,u) ⊂ Du/Pjb−1+c−1,u:

tκjb−1+c(x)−κib (x)RL(u)(δjb−1+c,u)

��

αu // Q
′(c−1)
b,u

��

RL(u)(δ̃jb−1+c,u) // Du/Pjb−1+c−1,u

Indeed, we know by (4.21) and (4.23) that

αu[1/t] :
(
tκjb−1+c(x)−κib (x)RX(δjb−1+c,u)

)
[1/t]→ Q

′(c−1)
b,u [1/t] =

(
Du/Pjb−1+c−1,u

)
[1/t]

is non-zero at u = x and on the Zariski dense set Z. Moreover, coker(αu[1/t]) is free over RL(u)[1/t]
for each u. Thus, after shrinking X again we can assume by Proposition 1.3 that this is true on all
of X. The claim then follows.

With these specifications in mind we now define

Q
′(c)
b = coker

(
tκjb−1+c(x)−κib (x)RX(δjb−1+c)

α−→ Q
′(c−1)
b

)
.

Notice first that since the base change αu is injective, it follows from induction that TorX1 (Q′(c)b , L(u)) =
(0) for all u. The inductive formulas for the shape of Q′(c)b,u are clear; for (c) please take the set

Z. We just need to clarify what has happened with the ranks of Q′(c)b,u /t for u ∈ Z versus u = x.
However, by construction we clearly have for any u that

rankRL(u)/tQ
′(c)
b,u /t = rankRL(u)/tQ

′(c−1)
b,u /t− ε(c)

u

where ε(c)
u ∈ {0, 1} and ε

(c)
u = 1 if and only if zκjb−1+c(x)−κib (x)δjb−1+c,u = δ̃jb−1+c,u. The values of

ε
(c)
u are readily found:
(i) Suppose that u ∈ Z. Then, δ̃jb−1+c,u = δjb−1+c,u, since Z ⊂ Xnc

cl . Further, κib(x) < κjb−1+c(x)
since c > 0 (see Lemma 4.25). In particular, ε(c)

u = 0 for u ∈ Z (and all c).
(ii) Now we consider u = x. We have δ̃jb−1+c,x = zκjb−1+c(x)−sjb−1+c(x)δjb−1+c,x. Thus,

ε(c)
x = 1 ⇐⇒ sjb−1+c(x) = κib(x)

⇐⇒ jb−1 + c = jb (by definition)
⇐⇒ c = jb − jb−1.

From this we see that the statement about the ranks continue through the induction. �
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We are about to complete the inductive procedure to prove Proposition 4.26, but let us just
summarize where we are at. So far we have inductively constructed quotientsQ′1, Q1, . . . , Q

′
b−1, Qb−1

of D satisfying the hypothesis of Proposition 4.26. Further, we have explained how we can construct
Q′b out of Qb−1. We now will proceed to construct Qb out of Q′b. The key here is going to be
exploiting the structure of t-torsion in the module Q′b or, rather, the structure of Q′b/t over RX/t.
At this point, we have to make a slight departure from the proof in the minimal critical case.
The new step that we need is contained in the following lemma—it has nothing to do with (ϕ,Γ)-
modules.

Lemma 4.30. Let Q be a finitely presented module over RX and assume for each u ∈ X and
j ≥ 1 that TorXj (Q,L(u)) = (0). Fix a point x ∈ X and Z ⊂ X a subset accumulating at x.
Suppose, moreover, that for all u ∈ X we have

Qu ∼=
s⊕
i=1

RL(u)/t
mi(u) ⊕R⊕rL(u),

where
(a) r and s are independent of u;
(b) mi(u) ≥ 1 is an integer for all u and i = 1, . . . , s;
(c) z 7→ minsi=1 {mi(z)} is constant on Z; let m be this minimum.
(d) m = minsi=1 {mi(x)} as well.

Then, there exists an open affinoid U 3 x such that Q/tm is free over RU/tm.

Proof. Notice that u 7→ rankRL(u)/tQu/t is constant on X since s and r are independent of
u. In particular, after shrinking X we can assume, by Corollary 1.4, that Q/t is free over RX/t. If
m = 1 then we are done, so we should suppose that m > 1.

We now prove by induction on 1 < m′ ≤ m that Q/tm
′

is free over RX/tm
′
. It suffices to show

that, after shrinking X, m′ ≤ mi(u), for all i. Indeed, if that is the case then

Qu/t
m′ ∼=

(
RL(u)/t

m′
)⊕s
⊕
(
RL(u)/t

m′
)⊕r

.

We see then that Qu/tm
′

is free over RL(u)/t
m′ for each u ∈ X and that moreover it has constant

rank. We then apply Corollary 1.4 to conclude that Q/tm
′

is free over RX/tm
′

in a neighborhood
of x.

So, suppose that it is true for m′ − 1 and we prove it for m′. Since RX/tm
′−1 is flat over X

(by [41, Lemma 2.1.7]), we can say that the same is true for Q/tm
′−1. By hypothesis we have

that TorXj (Q,L(u)) = (0) for all j ≥ 1 and u ∈ X. Thus, we can deduce by Corollary 4.4 that
Qu[tm

′−1] ∼= Q[tm
′−1]u for all u ∈ X. Consider Q′ := coker(Q[tm

′−1]→ Q). Since

Q[tm
′−1]u = Qu[tm

′−1] ∼=
s⊕
i=1

tmax{0,mi(u)−m′+1}RL(u)/t
mi(u),

we see that

(4.26) Q′u
∼=

s⊕
i=1

RL(u)/t
max{0,mi(u)−m′+1} ⊕RrL(u),

for each u ∈ X. Now consider u ∈ Z or u = x. By assumptions (c) and (d) we have that
mi(u)−m′ + 1 ≥ m−m′ + 1 ≥ 1 and thus

rankRL(u)/tQ
′
u/t = r + s
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for all u ∈ Z and at u = x. Since Z accumulates at x, Corollary 1.4, we can shrink X so that Q′/t
is free over RX/t. In particular then, on X we must have that mi(u)−m′ + 1 ≥ 1 for there to be
s terms in the large direct sum (4.26). That is, mi(u) ≥ m′ on X and we are done. �

With this result in hand, we now move on to finish the proof of Proposition 4.26.

Lemma 4.31. After shrinking X, there exists a sequence of quotients

Q′b = Q
(0)
b � Q

(1)
b � · · ·� Q

(ib+1−ib)
b =: Qb

of generalized (ϕ,Γ)-modules over X such that the following hold. Let 0 ≤ c ≤ ib+1 − ib.

(a) For all u ∈ X, TorX1 (Q(c)
b , L(u)) = (0) and

[
Q

(c)
b,u

]
free

= [Q′b]free = Du/Pib,u.

(b) At the point x we have

Q
(c)
b,x

Gr∼=

 jb⊕
i=1

κib+c(x)<si(x)

RL(x)(δ̃i,x)/tsi(x)−κib+c(x)

⊕Dx/Pib,x.

(c) On a subset of points u ∈ Z ⊂ Xnc
cl which accumulate at x we have

Q
(c)
b,u

Gr∼=

 jb⊕
i=ib+c+1

RL(u)(δi,u)/tκi(x)−κib+c(x)

⊕Du/Pib,u.

Moreover,
rankRL(u)/tQ

(c)
b,u/t = rankRL(x)/tQ

(c)
b,x/t

unless c = ib+1 − ib, in which case rankRL(u)/tQ
(c)
b,u/t− 1 = rankRL(x)/tQ

(c)
b,x/t.

Proof. We prove it by induction on 0 ≤ c ≤ ib+1− ib. Notice that for c = 0 it is the inductive
construction of Q′b = Q

(0)
b , plus the statement about the ranks in Lemma 4.29. So, we now suppose

that 0 < c ≤ ib+1 − ib and that we have constructed Q
(c−1)
b .

First, the generalized (ϕ,Γ)-moduleQ(c−1)
b,u /t is free overRL(u)/t for any u. Further, the function

u 7→ rankRL(u)/tQ
(c−1)
b,u /t

takes the same value at u = x as it does for u ∈ Z by (c). Since Z accumulates at x we deduce
that this function is minimized at u = x. Thus, Nakayama’s lemma (Proposition 1.3 and Corollary
1.4) allows us to shrink X and assume that Q(c−1)

b /t is free over RX/t.
Second, we claim that we can as well assume thatQ(c−1)

b /tκib+c(x)−κib+c−1(x) is free overRX/tκib+c(x)−κib+c−1(x).
To do this, we have to show that the hypotheses of Lemma 4.30 are satisfied by Q

(c−1)
b with

m = κib+c(x) − κib+c−1(x). We have

(i) We have TorX1 (Q(c−1)
b , L(u)) = 0 for all u ∈ X by induction.

(ii) Since the two functions u 7→ rankRL(u)

[
Q

(c−1)
b,u

]
free

and u 7→ rankRL(u)/tQ
(c−1)
b,u /t are both

independent of u, we have, by Corollary 2.8, a decomposition as needed in to apply the
lemma. That is, (a) and (b) are true.

(iii) We just need to check the statements (c) and (d) about the minimums. At points in Z we
clearly have the minimum is κib+c(x) − κib+c−1(x) (remember it is the case of c − 1 we are
applying induction to). At the point u = x we want to calculate

min {si(x)− κib+c−1(x) : 1 ≤ i ≤ jb and κib+c−1(x) < si(x)} .
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But, it follows from the definitions of the ib and jb that this minimum is κib+c(x)−κib+c−1(x).

Just to summarize, we have shrunk X to the point where Q(c−1)
b /tκib+c(x)−κib+c−1(x) is free over

RX/tκib+c(x)−κib+c−1(x). Consider the subspace Q′(c−1)
b [tκib+c(x)−κib+c−1(x)]. Since Q(c−1)

b als has no
higher Tor-groups over X, Corollary 4.4 also implies that

(4.27) Q
(c−1)
b,u [tκib+c(x)−κib+c−1(x)] ∼= Q

(c−1)
b [tκib+c(x)−κib+c−1(x)]u

for all u ∈ X. So, we define

Q
(c)
b := coker

(
Q

(c−1)
b [tκib+c(x)−κib+c−1(x)]→ Q

(c−1)
b

)
.

The first thing we notice is that TorX1 (Q(c)
b , L(u)) = (0) for all u ∈ X. Indeed, that follows easily

from using that it is true if we replace c by c − 1 and (4.27). We just need to check that the
inductive shape of Q(c)

b remains.
At the points u ∈ Z it is clear that the inductive shape remains. At the point u = x we have

(4.28) Q
(c−1)
b,x [tκib+c(x)−κib+c−1(x)]

Gr∼=
jb⊕
i=1

κib+c−1(x)<si(x)

tsi(x)−κib+c(x)RL(x)(δ̃i,x)/tsi(x)−κib+c−1(x).

Suppose that c < ib+1 − ib. By the definition of the jb, there exists a unique 1 ≤ i ≤ jb such
that si(x) = κib+c(x). Thus, the ith coordinate of (4.28) is RL(x)(δ̃i,x)/tsi(x)−κib+c−1(x), which is

the same as the ith coordinate of Q(c−1)
b,x . The inductive shape of Q(c)

b,x now follows, as well as the
statement about the ranks. If c = ib+1− ib then the inductive shape still holds, but we realize that
we didn’t drop a rank and thus we get the exception in the statement of the lemma. �
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CHAPTER 5

Applications to eigenvarieties

In this final chapter we explain how the previous chapters can be used to deduce new results
on the local geometry of eigenvarieties. For the purposes of this thesis, we restrict to eigenvarieties
attached to definite unitary groups. Our main result is that we can produce upper bounds on the
Zariski tangent spaces of such families—they are evenly provably tight in significantly new cases.

Let us outline our methods. Consider an n-dimensional eigenvariety X for a definite unitary
group G attached to an imaginary quadratic extension E/Q in which p splits (this will all be
explained in §5.1). Then, at every point x ∈ X one has associated a p-adic Galois representation
ρx : GE → GLn(Qp). For simplicity, let us assume that ρx = ρ⊗XL(x) arises from a representation
over the entire space X. In that case, one can consider the family of (ϕ,Γ)-modules Drig(ρp)
attached to ρ at a decomposition group above p (which is isomorphic to GQp). By construction,
Drig(ρp) will form a refined family of (ϕ,Γ)-modules over X. By the main result of Chapter 4, then,
one knows that locally near classical points we have an analytic variation of the associated non-
critical parabolizations. In particular, this is true on any infinitesimal neighborhood of a classical
point.

With this in hand, we follow standard techniques which have existed since the genesis of defor-
mation theory. The discussion above implies that formal neighborhoods of the space X naturally
embed into the paraboline deformation spaces studied in Chapter 3 (modulo questions at a finite
number of places, see §5.2.2). One can then apply Theorem 3.38 there to produce upper bounds
on the size of the tangent space to X. In many cases we produce an upper bound which is also a
lower bound.

The organization of the material is as follows. In the first section we explain what we mean
by a eigenvariety containing an automorphic representation on a definite unitary group G. In
the next section we will give a brief tour of the Galois representations attached to automorphic
representations for G. The final section will contain our main results. Recall that we have chosen
isomorphisms ιp : Q→ Qp and ι∞ : Q→ C in the introduction.

5.1. Eigenvarieties for definite unitary groups

We fix E/Q an imaginary quadratic extension in which the prime p is split. Denote by c the
non-trivial Q-automorphism c : E → E. Denote by v a fixed place above p with conjugate place,
so that p = vvc.

5.1.1. Definite unitary groups. Let ∆ be a central simple algebra over E equipped with an
involution c : ∆→ ∆ such that c

∣∣
E

is the usual complex conjugation (thus there is no confusion in
notation). We also assume that ∆ is unramified at the places dividing p (which is the case for all
but finitely many p). We then consider the algebraic group G/Q whose points on a Q-algebra R
are given by

G(R) =
{
X ∈ (∆⊗Q R)× : X ·Xc = 1

}
.

If we write n2 = dimE ∆ then we call G a definite unitary group in n-variables. The real points
G(R) form a classical unitary group with some signature (r, s) and we say that G is definite if
rs = 0. Equivalently, G is definite if and only if G(R) is compact.
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Example 5.1. The most familiar example is the case ∆ = Mn(E) and c is X 7→ tXc is the
usual Hermitian adjunction. The real points are the usual unitary group U(n)(R) over R and we
denote G = U(n) in this case as well. It has the following local properties:

(a) For each prime ` which is split in E (e.g. ` = p), the choice of a place w | ` (e.g. v) defines1

an isomorphism G(Q`) ∼=w GLn(Q`).
(b) If n 6≡ 2 mod 4 then G(Q`) is quasi-split for each prime `.

In the case that n ≡ 2 mod 4, there is no group G satisfying the previous two properties and which
is compact at infinity.

In the sequel we will be interested in the local properties of G (rather, automorphic representa-
tions for G). If ` is a prime we will use the notation G` := G(Q`). We denote as well the finite set
of places of E at which ∆ is ramified. For G = U(n) we have S∆ = ∅ and for any ∆ our running
assumption is that p /∈ S∆. If ` /∈ S∆ is a prime split in E then the choice of w | ` determines (just
as in Example 5.1) an isomorphism G` ∼=w GLn(Q`). Thus, the place w also determines subgroups

K` := GLn(Z`), a maximal compact subgroup of G`,
B` := the upper triangular Borel,

T` := (Q`)n = the diagonal torus, and
T0,` := T` ∩K`.

5.1.2. Automorphic representations. For each decreasing n-tuple

k = (k1 ≥ k2 ≥ · · · ≥ kn)

of integers there is a unique irreducible complex representation of G(R), denoted Wk, of highest
weight k. If k is strictly decreasing then we say that k (or Wk) is regular. Let T ⊂ GLn(C) be the
diagonal torus. If we fix an embedding G(R) ↪→ GLn(C) (there are two, each corresponding to an
embedding E ↪→ C) then the action of G(R) ∩ T on the highest weight vector in Wk is given by
the character

(z1, . . . , zn) 7→
n∏
i=1

zkii .

Let W be any such representation. Recall that A (resp. Af ) denote the ring adeles (resp. finite
adeles) over Q. We denote by A(G,W ) the space of automorphic forms of weight W :

A(G,W ) =
{
G(Af )

g−→W∨ : f is smooth, G(R)-finite and
f(ag) = af(g) for all a ∈ G(Q).

}
The compactness of G(R) implies that we have a decomposition

A(G,W ) =
⊕

π∞=W

π
m(π)
f ,

where π runs over the irreducible representations of G(A), m(π) is a non-negative integer and
π = π∞⊗ πf . The representation πf of G(Af ) is itself a restricted tensor product πf =

⊗′ π` over
the finite primes `, with each component π` being a smooth representations of G(Q`).

Let
S1 = {` : ` splits in E and ∆ is unramified at each place w | `} .

1The place w | ` fixed, we consider the embedding j : E → Ew ∼= Q`. Then we have an isomorphism E⊗Q Q`
∼=

Q⊕2
` is given by x⊗ a 7→ (j(x)a, j ◦ c(x)a). Under this identification, we see that

G(Q`) ∼=
˘

(A,B) ∈ GLn(Q`)
⊕2 : A · tB = 1

¯
,

which is clearly determined by its (completely arbitrary) first coordinate A.
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Fix as well a set of primes S0 ⊂ S1 such that S0 has Dirichlet density one with respect to S1. Notice
then that the set {w : w | ` with ` ∈ S0} has density one within the set of all places of E. Indeed,
∆ ramifies at only finitely many places and the primes w of E above a split prime ` have density
one. The set S0 being chosen, we also introduce a compact open subgroup Kp ⊂ G(Ap

f ) which we
call the a tame level. Notice that at a prime ` ∈ S0, for each choice w | ` we have an isomorphism
G(Q`) ∼=w GLn(Q`). We assume as well that Kp is decomposed

(5.1) Kp = KS0K
S0 = KS0K

S∪S0KS

where

• KS0 = G(ẐS0) is the standard maximal compact,
• S is a finite set of places (which we will assume contains p, though it does not matter here)

disjoint from S0

• if ` /∈ S ∪ S0 then K` is either hyperspecial compact or very special maximal compact.

If π =
⊗′ π` is an automorphic representation on G(Af ) and π is Kp-smooth then for each ` ∈ S0

and each place w | ` we get a smooth, unramified, representation πw of GLn(Q`). We will briefly
review what such a representation looks like in the next subsection.

5.1.3. Representations of GLn(Q`). Throughout this section, ` is any prime of Q, possibly
even ` = p. If χ : T`/T0,` → C× is a smooth character we introduce the normalized smooth
induction

IndG`B` χ =
{
f : G` → C : f(bg) = χ(b)δ1/2

B`
(b)f(g) for all g ∈ G`, b ∈ B`

}
.

Here, δB` : B` → C× is the modular character

δB`



a1 ∗ · · · ∗

a2 · · · ∗
. . .

...
an


 = |a1|n−1

` |a2|n−3
` · · · |an|1−n` =

n∏
i=1

|ai|n−(2i−1)
` .

It is well-known that the representation IndG`B` χ has a unique unramified subquotient π(χ). The
assignment χ 7→ π(χ) has the properties

• π(χ) ∼= π(χ′) if and only if χσ = χ′ for some permutation2 σ ∈ Sn.
• IndG`B`(χ) = π(χ) if and only if χi(`)χj(`)−1 6= ` for any i 6= j.

Recall that the local Langlands correspondence, as resolved by Harris and Taylor for GLn(Q`) [35],
defines a bijection

π
rec←→ (r(π), N(π))

between smooth irreducible representations π of G` and n-dimensional Weil-Deligne representations
(r,N) of WQ`

. In the case that π is unramified we have

• N(π) = 0 and r(π)
∣∣
IQ`

= 1, and

• r(π)(Frob`) is conjugate to diag(χ1(`), . . . , χn(`)) ∈ GLn(C).

2The character χσ is given by (z1, . . . , zn) 7→ χ(zσ(1), . . . , zσ(n))
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5.1.4. Hecke algebras. The construction of eigenvarieties will depend on the choice of a
Hecke algebra H. We describe this now. The Hecke algebra is going to constructed out of local
Hecke algebras at each finite prime `. Here, for the first time, we begin to separate out the theory
when ` = p and with ` 6= p.

Let G0 be a locally compact, totally disconnected group with left Haar measure µ. For any
topological ring R we denote by

C0
c (G0, R) = {f : G0 → R : f is continuous and compactly supported} .

Suppose that U ⊂ G0 is a compact open subgroup such that µ(U) = 1 (or, rather, we renormalize
µ(U) = 1). Then, we define the Hecke algebra H(G0, U) ⊂ Cc(G0,Z) as

H(G0, U) :=
{
f ∈ Cc(G0,Z) : f(ugu′) = f(g) for all u, u′ ∈ U

}
.

This is a (not necessarily commutative) algebra under the standard convolution product. If π0 is
a smooth representation of G0 then πU0 is naturally a module over the Hecke algebra H(G0, U). In
fact, the assignment π0 7→ πU0 defines an equivalence of categories between smooth representations
of G0 and H(G0, U)-modules.

Recall that we fixed our tame level Kp and a set of primes S0 at the end of §5.1.2. The above
discussion applies to the group G0 = G(AS0) with respect to its maximal compact open subgroup
U = KS0 = G(ẐS0). We define the spherical Hecke algebra

Hunr
S0

:= H(G(AS0), G(ẐS0)).

It is well-known that the algebra Hunr
S is commutative. To recall this, denote by $S0 the uni-

formizing element of AS0 which is the uniformizer ` in the `-coordinate. Then, denote by xi is the
characteristic function of the double coset

(5.2) G(ẐS0)
(
Ii×i

$SIn−i×n−i

)
G(ẐS0).

This is evidently an element of Hunr
S0

and in fact there is an isomorphism

Hunr
S0
∼= Z[x±1

0 , . . . , xn−1, xn = 1].

The algebra Hunr
S0

acts naturally on automorphic representations π of tame level Kp. If π is a

representation with tame level Kp then πG(bZS0
) is necessarily one-dimensional and thus π defines

a character Hunr
S0
→ C. We can post-compose with with ιpι

−1
∞ to get a character

ψπ,unr : Hunr
S0
→ Qp.

We also must specify a local Hecke algebra at the prime p. Recall that we have assumed that
p is split in E and ∆ is unramified at p. We have also fixed our choice of v | p. Thus we have an
isomorphism G(Qp) ∼=v GLn(Qp). The Iwahori subgroup I ⊂ G(Qp) is defined to be the subgroup

I =

g ∈ GLn(Zp) : g ≡


∗ ∗ · · · ∗
∗ · · · ∗

. . .
...
∗

 mod p

 .

This is the higher-dimensional analog of the classical congruence subgroup Γ0(p) ⊂ SL2(Z). It is
a compact open subgroup and we can consider the Hecke algebra H(G(Qp), I). Unfortunately, it

96



is not necessarily commutative. To that end, consider the characteristic functions [Iu−I] of double
cosets Iu−I where u− lies in the submonoid U− ⊂ Tp given by

U− =



pm1

pm2

. . .
pmn

 : m1 ≥ m2 ≥ · · · ≥ mn

 .

These elements of H(G(Qp), I) commute with each other and are invertible inside H(G(Qp), I)
(though not within U−). We define the Atkin-Lehner algebra Ap as the subalgebra generated by
{[Iu−I]}u−∈U− , together with their inverses. In fact, if U denotes the group generated by U− then
Ap ∼= Z[U ].

The algebra Ap again arises naturally as the domain for certain characters attached to auto-
morphic representations unramified at p. Indeed, suppose that πp is an unramified representation
of Gp and fix a smooth character χ : Tp/T0,p → C× such that πp ∼= π(χ). We have a name for such
characters.

Definition. A refinement of πp is the choice of a character such that πp ∼= π(χ).

Let us return for a moment to the normalized induction IndGpBp χ and consider the H(Gp, I)-

module of Iwahori-fixed vectors IndGpBp(χ)I . It is well-known (see [5, §6.4.4], for example) that we
have a decomposition

(5.3) IndGpBp(χ)I,Ap−ss ∼=
⊕
σ∈Sn

χσδ
−1/2
Bp

.

The action of Ap on the right hand side is through the natural action of U ∼= Tp/T0,p.
Now assume that χ is a refinement for πp. We can consider the Iwahori fixed vectors π(χ)I . Its

Ap-semi-simplificiation embeds into the left hand side of (5.3).

Definition. An accessible refinement is a character χ0 such that χ0δ
−1/2
B appears in the induced

decomposition π(χ)I,ss.

We have some short remarks. First, any such character is of the form χσ for σ ∈ Sn. Thus,
an accessible refinement χσ is actually a refinement in the sense that πp ∼= π(χ) ∼= π(χσ). Second,
since πp is smooth, the space πIp is finite-dimensional and thus any character χσδ−1/2

B which appears
in the decomposition of πI,ssp is also a subrepresentation of πIp . The third thing is that, as we have
mentioned, unless χi(p)χj(p)−1 = p for some i 6= j we have that IndGB(χ) is itself unramified. Thus,
except in a special case, every refinement χσ defines an accessible refinement.

As U ∼= Tp/T0,p, a refinement χ determines a character Ap ∼= Z[U ]
χ−→ C. Again, by post-

composing with ιpι
−1
∞ we see it has a character Ap → Qp. Note that the choice of χ matters,

i.e. replacing χ by χσ will change the character. We will come back to this point shortly (and
renormalize the character itself, hence not naming it yet).

5.1.5. Galois representations. We describe here the Galois representations attached to au-
tomorphic forms π on G. Choose an automorphic representation π for G and assume that π∞ has
regular weight, πp is unramified and πp has level Kp. Recall again our decomposition (5.1) and
specifically the finite set of primes S. If it offers no confusion, we denote by S as well the set of
primes of E above a prime in S, together with the two places dividing p.

We offer the following as both a proposition and also an assumption. After making the statement
we will go to some length to outline the known cases as can be best deduced from the literature. If
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ρ : GE,S → GLn(Qp) is a representation then we let ρ⊥ be the representation g 7→ ρ∨(cgc), where
ρ∨ is the usual linear dual.

Proposition/Assumption 5.2. There exists a unique, continuous, semi-simple representation

ρπ : GE,S → GLn(Qp)

satisfying the following three properties.
(a) ρπ is conjugate self-dual: ρπ(n− 1) ∼= ρ⊥π .
(b) Assume that ` ∈ S0. Choose a place w | `. If π is unramified at ` then ρπ is unramified at

w and WD(ρπ
∣∣
Ew

)F−ss = ιpι
−1
∞ rec(πw |det|

1−n
2 ).

(c) The representation ρπ is crystalline at v. The Hodge-Tate weights are given by

−k1 < −k2 + 1 < · · · < −kn + n− 1,

and WD(ρπ
∣∣
Ev

)F−ss = ιpι
−1
∞ rec(πv |det|

1−n
2 ).

Before remarking on how to deduce (that which can be deduced) the result from the literature,
let us make some undeniable claims. First, the uniqueness of ρπ follows from the continuity, semi-
simplicity and property (b). Indeed, the primes of E above S0 have Dirichlet density one and so
this claim follows from Cebotarev. Second, (a) actually follows from (b) by considering the two
places w and wc dividing a prime ` ∈ S0 and basic properties of the local Langlands correspondence.
Finally notice as well that (a) implies

ρπ
∣∣
GEvc

∼= ρ∨π (1− n)
∣∣
GEv

.

Thus it follows from the third condition that ρπ is crystalline at vc as well. The reader is welcome
to work out its Hodge-Tate weights and the characteristic polynomial of its crystalline Frobenius.

Let us now remark on the proof. There are two separate issues: Langlands base change between
G and GLn/E and the construction of Galois representations for automorphic representations over
GLn. Let us focus on the second point first.

Denote by Π an automorphic representation of GLn/E . We assume that Π is regular, cuspidal,
algebraic and essentially self-dual : Πc ∼= Π∨. The Galois representation corresponding to Π was
then constructed by Shin [60, Theorem 1.2] under the extra hypothesis that Π be Shin-regular
(which means regular if n is odd and something slightly stronger if n is even). For Shin-regular Π, the
local-global compatibility at primes away from p and the crystalline property at the primes dividing
p were proven in loc. cit. At the primes dividing p, the local-global compatibility was proven by
Barnet-Lamb, Gee, Geraghty and Taylor [1]. The constructions of the Galois representations for
non-Shin-regular Π is obtained via an eigenvariety argument3 due to Chenevier and Harris [18].
A weak form of local-global compatibility away from p and, again, the crystalline property at the
primes dividing p is also proved in loc. cit. The strong form of local-global compatibility away
from p in these cases was proven by Caraiani [13, Theorem 1.1]. The full local-global compatibility
at places dividing p in the non-Shin-regular case is also due to Caraiani [14], though for the the
crystalline case we restrict ourselves to on the group G it would be enough to use [1, Theorem A].

The question remains as to when one can use the previous paragraph to construction the
representations given in Proposition 5.2. This is a question of functoriality in the Langlands
program—specifically, base change. The situation here is slightly more dire than the above. In
fact, Proposition 5.2 can, at the moment, only be deduced in the following two known situations:

• The explicit work of Rogawski [54] settles the cases of n ≤ 3.
• If G(Ew) is a central division algebra at a finite place w then he follows from work of Harris

and Labesse [34]. Note that this condition rules out the groups U(n).

3Using the same eigenvarieties we are attempting to explain!
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There is more to say, however. Had we worked with a general CM extension E/F and G a definite
unitary group over F attached to this extension then all instances of base change are known in the
case that F 6= Q by [44]. One should note that the footnote on the first page of loc. cit. suggests
that the case of F = Q will soon be treated as well. In summary, we know Proposition 5.2 for sure
in the two cases bulleted above, but the general case is probably within reach of current technology.

Let us finally point out that Proposition 5.2 makes no claim about the irreducibility of ρπ. This
has nothing to do with base change and everything to do with questions over GLn/E . In general,
one expects that the representations attached to cuspidal Π will be irreducible, though this seems to
still be unknown. For a result in this direction, however, we note that a recent preprint of Patrikis
and Taylor announces a result [52, Theorem D] that if we fix π with cuspidal base change Π then
there are infinitely p for which ρπ is irreducible.

5.1.6. The relationship between automorphic and Galois data. In order to bring to-
gether the p-adic interpolation of automorphic representations with the p-adic interpolation of
Galois representations, we would do well to remind ourselves what the local-global compatibility
statements (b) and (c) of Proposition 5.2 mean. Specifically, we want to relate ρπ to the charac-
ters of the Hecke algebra described in §5.1.4. Let π be as above and fix a prime ` (including the
possibility that ` = p for the moment) so that π` is unramified and ` is split in E. Choose a place
w | ` (taking w = v if ` = p).

If ` 6= p then the local-global compatibility statement Proposition 5.2(b) is equivalent to
ρπ(Frobw) and ι−1

p ι∞r(πw |det|
1−n

2 )(Frobw) having the same characteristic polynomials. In the

case that ` = p Proposition 5.2(c) is equivalent to the operator ι−1
p ι∞r(πv |det|

1−n
2 )(Frobv) having

the same characteristic polynomial as the crystalline Frobenius ϕ acting on Dcris(ρπ
∣∣
Ev

). We now
compute the automorphic side of these relations.

We first concentrate on ` 6= p. Choose a smooth unramified character χ : T` → C× such
that πw ∼= π(χ). We consider the character χ as a product of n characters χ =

∏n
i=1 χi with

χi : Q×` → C×, trivial on Z×` . Then, as remarked earlier we have

r(πw)(Frob`) ∼ diag (χ1(`), . . . , χn(`)) .

Thus, we see that

r(πw |det|
1−n

2 )(Frob`) =
(
r(πw)⊗ |−|

1−n
2 ◦Art`

)
(Frob`)(5.4)

∼ diag
(
`
n−1

2 χ1(`), . . . , `
n−1

2 χn(`)
)
.

On the other hand, as explained in §5.1.4, the representation πw defines a character

(5.5) H(G(Q`), G(Z`)) ∼= Z[x±1
0 , . . . , xn−1]

ψπw,unr−→ Qp.

The space πG(Z`)
w is one-dimensional and one can explicitly compute the action of xi on a basis

element using the double coset (5.2). What one discovers4 is that

(5.6)
n∑
i=0

(−1)n−iψπw,unr(xi)Xi =
n∏
i=1

(X − `
n−1

2 χi(`)).

Combining (5.4), (5.6) and Proposition 5.2(b), we see that the character ψπw,unr encodes the same
information as the characteristic polynomial of ρπ(Frobw).

4Let us just give an example, with n = 3 and i = 2. Then, we have a decomposition

GL3(Z`)

0@1
1

`

1A GL3(Z`) =

0@1
1

`

1A GL3(Z`) t
`−1G
b=0

0@1
` b

1

1A GL3(Z`) t
`−1G

b,c=0

0@` b c
1

1

1A GL3(Z`)
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Now suppose that ` = p. The computation (5.4) of the Weil-Deligne representation is still fine,
but we will push further in our interpretation on the Hecke side. Recall that the Atkin-Lehner
algebra Ap is the subalgebra of H(GLn(Qp), I) generated by the group U . Let χ be an accessible
refinement πv. Recall that in our discussion at the end of §5.1.4 we explained how the character χ
determines a character χ : Ap → Qp, because U ∼= Tp/T0,p. We now normalize this character by
the following formula

(5.7) ψπv ,p,χ := χδ
−1/2
B δk,

where δk : Tp → Q×p is given by

(5.8) δk (diag(z1, . . . , zn)) := zk1
1 · · · z

kn
n .

We introduce elements

(5.9) ui := [Ixi−1I][IxiI]−1 ∈ Ap.
for i = 1, . . . , n. Passing from the left hand side to the right hand side of (5.3) we see that ui acts
on IndGB(χ)I,ss through the value of the matrix

ui =

Ii−1×i−1

p
In−i × In−i

 ∈ T ⊂ A×p .
on the various characters χσδ−1/2

B .
We can then easily compute the value of ψπw,p,χ on the elements ui:

ψπv ,p,χ(ui) = χi(p) |p|−(n+1−2i
2 ) pki(5.10)

= χi(p)p
n−1

2
+ki−i+1.

Comparing this with (5.4) and Proposition 5.2(c), we see that the action of the crystalline Frobenius
ϕ on Dcris(ρπ

∣∣
GEv

) has characteristic polynomial

det

(
X − ϕ

∣∣
Dcris(ρπ

∣∣
GEv

)

)
=

n∏
i=1

(
X − p

n−1
2 χi(p)

)
=

n∏
i=1

(
X − p−ki+i−1ψπv ,p,χ(ui)

)
.

In particular, the crystalline eigenvalues for ρπ are the numbers pκi,πψπ,p,χ(ui) where κi,π is the ith
Hodge-Tate weight of ρπ (when ordered in increasing order). Moreover, the choice of the accessible
refinement χ determines an ordering

(5.11)
(
p−k1ψπ,p,χ(u1), p−k2+1ψπ,p,χ(u2), . . . , p−kn+n−1ψπ,p,χ(un)

)
Thus if f is a basis of πG(Z`)

w
∼= IndGB(χ)GL3(Z`) then it is determined by f(1). Recall that δB =

diag(|−| , 1, |−|−1) in this case. Then

T1f(1) = f

1
1

`

+
`−1∑
b=0

f

1
` b

1

+
`−1∑
b,c=0

f

` b c
1

1


=

χ3(`) |`|−1 +
`−1∑
b=0

χ2(`) |`|0 +
`−1∑
b,c=0

χ1(`) |`|−1

 f(1)

= `(χ1(`) + χ2(`) + χ3(`))f(1).
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of the crystalline eigenvalues. We end with a short remark on the regularity of the eigenvalues.
Recall that if πv ∼= π(χ) with χi(p)χj(p)−1 6= p then every refinement is accessible and πv ∼=
IndGB(χ). In particular, the previous discussions says that every refinement is accessible if and only
if φ 6= pφ′ for any choice of crystalline eigenvalues φ and φ′.

5.1.7. Eigenvarieties. Our final preparation is to describe what we mean by an eigenvariety
and give its main properties. The statement of our theorems on eigenvarieties will wait until §5.3.

Throughout we will denote by W the rigid analytic weight space

W := Homcont

(
(Z×p )n,Grig

m

)
.

The Cp-points are a disjoint union of polydiscs. It contains a collection of points Zn given by

(k1, . . . , kn)↔
(

(z1, . . . , zn) 7→ zk1 · · · zkn
)

In particular, if k is a highest weight for a G(R)-representation then sequence k ∈ Zn corresponds
to the point δk ∈ W(Qp) we defined in (5.8). We will make use of a standard notation

Zn,− = {k ∈ Zn : k1 > k2 > · · · > kn} .

The set Zn,− is Zariski dense in W. Moreover, each subset of the form

Zn,−c =
{

(k1, . . . , kn) ∈ Zn,− : ki − ki+1 > c for i = 1, . . . , n− 1 and kn > c
}

is Zariski dense and accumulates at every point in Zn.
Consider automorphic representations π for G with regular weight and such that πp is unram-

ified. We recall that we have defined our set S0 and the unramified Hecke algebra Hunr
S0

. Assume
that π is unramified on S0. In that case we have a character ψπ,unr : Hunr

S0
→ Qp by (5.5). Consider

as well the choice of an accessible refinement χ for πv. Recall as well that χ defines a character
ψπ,p,χ by the formula (5.7). Thus, if we define H = Ap ⊗Hunr

S0
then we get a character

ψπ,χ : H → Qp

given by ψπ,χ = ψπ,p,χ ⊗ ψπ,unr. Define now a set

Zcl := {(ψπ,χ,kπ)}(π,χ) ⊂ Hom(H,Qp)× Zn,−,

where (π, χ) runs through the possible choices above.

Remark. We want to make a quick remark on the choice of the Hecke algebra H. In particular,
we keep reminding the reader that the primes above S0 have density one among all the primes of
E but seen as a set of primes of Q we get at most half the primes. However, if we fix π as above
and assume that it has tame level Kp decomposed as in (5.1) then we could as well consider any
commutative algebra HS0∪{p} ⊂ H(G(AS0),KS0) and study characters H⊗HS0 → Qp.

However, for arithmetic information our specifications are sufficient. Indeed, The Galois repre-
sentation ρπ is completely determined, as mentioned in §5.1.5, by information at primes in S0. If
we have sufficiently strong instances of Langlands functoriality available to us then one should be
able to recover, from ρπ, the Hecke information for π at places away from S0 as well. Note that we
aren’t saying that π is determined by ρπ (in fact strong multiplicity one fails for unitary groups)
but rather systems of Hecke eigenvalues for π are determined by ρπ.

Continuing on with the description of an eigenvariety, we make one more choice. We let e ∈
Cc(G(AS0∪p

f ),Q) be an idempotent. Assume that we have extended it to Cc(G(Ap
f ),Q)) trivially

at primes in S0. The element e acts on automorphic representations π and we let

Ze = {(ψπ,χ,kπ) : e(πp) 6= (0)} .
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For example, we consider again our tame level Kp and we let eKp be the characteristic function of
Kp ⊂ G(Ap

f ) (scaled so that it is idempotent). In that case, eKp(πp) 6= 0 if and only if π has tame
level dividing Kp. We suppose from now on as well that eeKp = e, i.e. every element of type e has
tame level Kp.

We refer to the set Ze as the refined automorphic representations of type e. One of the main
results of [15] (see as well [5, Theorem 7.3.1]) is that an eigenvariety for Ze exists. If x is a point in
a rigid analytic space X we use evx to denote the evaluation map evx : Γ(X,O)→ L(x). We also
introduce elements Fi ∈ Γ(X,O) given by Fi(x) = evx ◦ψ(ui), where ui ∈ Ap are given by (5.9).

Proposition 5.3. An eigenvariety of Ze exists. That is, there exists a reduced rigid analytic
space X equipped with

(a) A character ψ : H → Γ(X,O),
(b) An analytic map ω : X →W,
(c) An accumulation subset Z ⊂ X(Qp).

such that
(1) The natural map

X(Qp)→ Hom(H,Qp)×W
x 7→ (evx ◦ψ, ω(x))

induces a bijection between Z and Ze.
(2) Ôrig

X,x is topologically generated over Ôrig
W,ω(x) by the germs of functions ψ(H) ⊂ Orig

X,x.
(3) Let u0 = diag(pn−1, . . . , p, 1) ∈ A×p . Then, the map (ω, ψ(u0)−1) : X →W ×Gm is finite.
The data (X,ψ, ω, Z) is unique up to unique isomorphism (in an evident sense) from just these
three axioms. Moreover, we can also say

(I) X is equidimensional of dimension n.
(II) Let Z ′ ⊂ Z be the set of points z such that

(i) ω(z) = (k1,z, . . . , kn,z) ∈ Zn,−,
(ii) for each i = 1, . . . , n− 1 we have

vp (F1(z) · · ·Fi(z)) < ki,z − ki+1,z + 1.

Then, Z ′ is Zariski dense in X and accumulates at every point of Z.

Proof. First, the uniqueness statement is [5, Lemma 7.2.7]. The existence is given by [5,
Theorem 7.3.1] except that the theorem as stated only says that Z ′ accumulates on itself. However,
the proof they give clearly implies our statement. We include it for the reader’s convenience.

By [5, Proposition 7.3.5] we have that any point z ∈ X satisfying condition (i) and (ii) is
necessarily at point of Z, i.e. must be classical. This is an analog in this setting of the classical
control theorem due to Coleman [21, Theorem 6.1]. To see that these points are dense in an affinoid
neighborhood basis of a point of z ∈ Z, consider any open locus z ∈ U on which u 7→ vp(evu ψ(ui))
is constant for each i. Then U is admissibly covered by open affinoids V so that ω(V ) is open W
(see [5, Theorem 7.3.1]) and ω

∣∣
V

is finite (and each Fi has constant slope, still). Recall that any
set of the form

Zn,−c =
{
k ∈ Zn,− : ki − ki+1 > c

}
is Zariski dense in ω(V ) since ω(z) ∈ Zn. In particular, taking

c = −1 + max
i
vp(F1(z) · · ·Fi(z)),

we see that the points satisfying (i) and (ii) are dense in V and we conclude this final point. �
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5.2. Galois representations over eigenvarieties

The rest of the relevant properties of eigenvarieties, for us, will be described in terms of the
family of Galois representations. Recall that Proposition 5.2 says that to a regular algebraic auto-
morphic representation π for G there is associated a Galois representation ρπ : GE,S → GLn(Qp)
satisfying some amount of compatibility with the local Langlands correspondence at a density one
set of places. By §5.1.6, if z is a point corresponding to π on an eigenvariety X then ρπ is com-
pletely determined by the unramified part evz ◦ψunr : Hunr

S0
→ L(z). In fact, the assignment π 7→ ρπ

interpolates along an eigenvariety by the following result.

Proposition 5.4 ([5, Proposition 7.5.4]). For every point x ∈ X(Qp) there exists a unique,
continuous, semi-simple Galois representation

ρx : GE,S → GLn(Qp)

characterized by: for all w | ` with ` ∈ S0 we have

(5.12) det(X − ρx(Frobw)) =
n∑
i=0

(−1)n−i evx ◦ψ(xi,w)Xi.

In particular, tr(ρx(Frobw)) = evx ◦ψ(xn−1,w).

Here, there xi are the Satake parameters defined in (5.2) with the subscript w denoting that we
are seeing it in the local Hecke algebra via the place w (incuding an isomorphism H(G(Q`),K`) ∼=
H(GLn(Q`),GLn(Z`))). For points x = z = (ψπ,χ,kπ) ∈ Z associated to an automorphic repre-
sentation π of regular weight kπ, the representation ρx is ρπ (notice it is independent of χ). The
calculation of this trace was shown in (5.6).

From the points of Z one can obtain, via the above interpolation, various facts about the Galois
representations ρx. For example, one immediately deduces from (5.12) that for all x ∈ X(Qp) we
have that ρ⊥x ∼= ρx(n− 1).

Let us make some short remarks on the proof of Proposition 5.4, as we will need it to make
refined families of (ϕ,Γ)-modules as in Chapter 4. What one considers is the pseudocharacter5

T : GE,S → Γ(Z,O)

given by T (g)(z) = tr(ρz(g)), where ρz has been defined at points of Z by Proposition 5.2. There
are two steps now. First, by a clever argument due to Chenevier [15, Proposition 7.1.1] one shows
that T extends to a pseudocharacter T : GE,S → Γ(X,O). Second, one specializes back to a given
point x ∈ X(Qp) and constructs a Galois representation by Taylor’s theorem [61, Theorem 1(2)].
In any case, over the space X we have a pseudocharacter T : GE,S → Γ(X,O) and we make free
use of it from here on out.

Lemma 5.5. Suppose that x ∈ X(Qp) such that ρx is absolutely irreducible. Then, there exists
an affinoid x ∈ U ⊂ X and a representation ρ : GE,S → GLn(Γ(U,O)) such that tr(ρ) = T

∣∣
U

and
ρ⊗Γ(U,O) L(u) = ρu for all u ∈ U .

Proof. Let A be the rigid local ring A = Orig
X,x. By Newton’s method, A is a local Henselian

ring. It then follows from the absolutely irreducible hypothesis on ρx that ρx lifts uniquely to a
representation ρ̃x : GE,S → GLn(A) (this was proven, independently, by Rouquier [55, Corollarie

5Recall, if G is a topological group and R is a topological ring then a d-dimensional pseudocharacter is a
continuous function T : G → R satisfying T (1) = d, T (gh) = T (hg) and the so-called Frobenius identity relating
T (g1g2 · · · gn) to the values of T on various subproducts. An example of such a function is T = tr ρ for a continuous
representation ρ : G→ GLn(R). For a precise definition along with the basic results in the theory of pseudocharacters,
please see [55]. They also go under the pseudonym pseudorepresentation.

103



5.2] and Nyssen [51, Théorème 1]). By [5, Lemma 4.3.7] (please put, for their notations, M = ρ̃x)
there exists a representation ρ satisfying all but the final condition. The final condition follows
by Taylor’s theorem if we semi-simplify the representation ρ ⊗Γ(U,O) L(u). However, since the
irreducibility locus of ρ is Zariski open and ρx is absolutely irreducible, we can further shrink U to
ensure that there is no need to semi-simplify. �

Remark (Joke). For the first time since first semester calculus I made a reasonable citation of
Newton’s method and Taylor’s theorem in the same paragraph.

Remark (Serious). It is expected that the hypotheses of Lemma 5.5 are true at the points in
Z though it is only known if n ≤ 3 (but, see the paragraph preceeding at the end of §5.1.6).

We are going to be interested in the local properties of ρ on decomposition groups GEw ⊂ GE,S .
If w /∈ S then the variation is clear: the representations are all unramified and Proposition 5.4 tells
us that tr ρ(Frobw) varies analytically over X. It remains to describe the behavior at places of S.

5.2.1. The variation of (ϕ,Γ)-modules at places v | p. Fix now a point x = z ∈ Z such
that ρz is irreducible. By the Lemma 5.5 we can choose an affinoid open z ∈ U ⊂ X such that for
all u ∈ U , ρu arises via specialization from a bona fide representation ρ over U . By Proposition
1.13 we can construct a (ϕ,Γ)-module D := Drig(ρ

∣∣
GEv

) which is the p-adic interpolation of the

(ϕ,Γ)-modules Du = Drig(ρu
∣∣
GEv

).

To fix notation for the next result, consider the characters σi : Z×p → Z×p given by z 7→ z1−i.
We extend each σi to a character on Q×p trivially at p. Recall as well that prior to Proposition 5.3
we defined functions Fi ∈ Γ(X,O).

Lemma 5.6. The family of (ϕ,Γ)-modules D forms a refined family over the space U . The extra
data is defined as follows.

(a) If u ∈ U then ω(u) ∈ W(L(u)) is a character
(
Z×p
)⊕n → L(u)× which we see as a n-tuple

of characters (ω1(u), . . . , ωn(u)). The characters δi is are defined by

δi,u := σi · ωi(u) unr(Fi(u)).

(b) The set of classical points is defined by Z.

Proof. We need to check that the data (U,D, δi, Z) satisfies the axioms (RF1)-(RF4). Let
z ∈ Z be associated to an automorphic representation π with regular weight kπ = (k1 > k2 > · · · >
kn). Recall that ω(z) = δk is defined in (5.8). From that definition, we have

wt(δi,z) = wt(ωi(z)) + wt(σi(z)) = −ki + i− 1

By Proposition 5.2 we have that (RF1) is true at points z ∈ Z as well as the first half of (RF3) and
all of (RF2). The second half of (RF3) follows from the computations we made in §5.1.6 because the
list of values (5.11) is the same (by definition) as the list of values (pwt(δ1,z)F1(z), . . . , pwt(δn,z)Fn(z)).
Define6 now κi ∈ Γ(X,O) by κi(u) := wt(δi,u). The rest of (RF1) (that wt(δi,u) is a Hodge-Tate-Sen
weight of Du) follows from [5, Lemma 7.5.12].

It remains to show the density statements (RF4) holds. We have to consider the points in Z
which are non-critical. Let z ∈ Z. Then, as we have already mentioned, the crystalline eigenvalues
of ϕ acting on Dcris(Dz) are given by

(φ1(z), . . . , φn(z)) = (pκ1(z)F1(z), . . . , pκn(z)Fn(z)).

6The κi are formally the ith coordinates of the composition X → An → An given by logp ◦ω followed by the

affine change of coordinates (y1, . . . , yn) 7→ (−y1, 1− y2, . . . , n− 1− yn).
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Consider the set Z ′ defined in Proposition 5.3. Suppose that z′ ∈ Z ′. Then, we have

vp(φ1(z′)) = κ1(z′) + vp(F1(z′)) < κ2(z′),

and if i > 1 then

vp(φ1(z′) · · ·φi(z′)) = κ1(z′) + · · ·+ κi(z′) + vp(F1(z′) · · ·Fi(z′))
< κ1(z′) + · · ·+ κi−1(z′) + κi+1(z′).

It follows from Example 2.25 that any point z′ ∈ Z ′ is non-critical. The axiom (RF4) follows as in
the proof of Proposition 5.3. �

5.2.2. The Weil-Deligne representations at places of S away from p. Our goal here is
to recall some notation used in [5] in order to explain the behavior of the representations {ρx}x∈X
at primes w - p in S.

Let m be an integer and if A is a commutative ring denote by Jm the nilpotent operator on Am

with Jm(ei) = ei−1 for i = 2, . . . ,m and Jm(e1) = 0. Recall that if N is a nilpotent matrix over a
field k then it has a Jordan form (after passing to k)

N ∼ Jt1(N) ⊕ · · · ⊕ Jts(N)

where t1(N) ≥ · · · ≥ ts(N) are integers, uniquely determined by this ordering.

Definition. If N and N ′ are two different nilpotent matrices then we say that N ≺ N ′ if

t1(N) + · · ·+ ti(N) ≤ t1(N ′) + · · ·+ ti(N ′), for all i.

We say that N ∼ N ′ if N ≺ N ′ and N ′ ≺ N .

If N and N ′ are the same size, over the same field, then this is equivalent to N being in the
Zariski closure of the conjugacy class of N ′. We don’t in general require N and N ′ to have the
same size or the same coefficients.

Example 5.7.
(

0 0
0 0

)
= J1 ⊕ J1 ≺ J2 =

(
0 1
0 0

)
.

Let F be a local field. Suppose that (r,N) is a Weil-Deligne representation of F . Then, if τ is
a finite-dimensional irreducible representation of IF we can consider the τ -isotypic component r[τ ]
of r. Recall that for all g ∈ WF we have r(g−1)Nr(g) = ‖g‖N . In particular, IF commutes with
N and so N preserves r[τ ]. We denote by Nτ the induced nilpotent operator in EndC(r[τ ]).

Definition. Let (r,N) and (r′, N ′). We say that N ≺IF N ′ if Nτ ≺ N ′τ for all τ . We say that
N ∼IF N ′ if Nτ ∼ N ′τ for all τ .

Notice that if N ∼IF N ′ then r
∣∣
IF
∼= r′

∣∣
IF

. Indeed, N ∼IF N ′ implies that dim r[τ ] = dim r′[τ ]
for each finite-dimensional irreducible complex representation τ of IF .

Example 5.8. Suppose that r is n-dimensional and that (r,N) ≺IF (1⊕n, 0). If τ 6= 1 then
0τ = 0. Since 01 = J⊕n1 we get

dim r[τ ] =

{
0 if τ 6= 1,
n if τ = 1,

and we see that (r,N) must be unramified.

We put ourselves back into the eigenvariety setting as before. Choose a point x ∈ X(Qp) such
that ρx is irreducible. If the reader wishes, they may just chose x = z ∈ Z. By Lemma 5.5 we know
that on some affinoid neighborhood U of x, the representations {ρu}u∈U(Qp) all arise from a single
representation ρU : GE,S → GLn(Γ(U,O)). To simplify notation assume that U = X. In that case
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the local ring Orig
X,u is reduced and thus we can form the total ring of fractions Fu := Frac(Orig

X,u).
This is a product of fields

Fu =
∏
Z(u)

FZ(u),u

running over irreducible components Z(u) passing through u. For each u ∈ U there are then three
representations ρu, ρ̃u and ρgen

Z(u) labeled as:

(5.13) GLn(L(u))

GE,S
eρu
//

ρu
99rrrrrrrrrrr

ρgen
Z(u) %%LLLLLLLLLLL

GLn(Orig
X,u)

OO

��

GLn(FZ(u),u)

If w is a place of E then for any ρ we can consider ρw := ρ
∣∣
GEw

, a p-adic representation of the

local field Ew. Fix a w - p∞. Going back to the picture (5.13), it is well-known that attached7 to
ρu,w there is a Weil-Deligne representation (ru,w, Nu,w). Slightly less well-known is that the same
is true for ρgen

Z(u) (see [5, §7.8.4]) and we denote the associated representation by (rgen
Z(u),w, N

gen
Z(u),w).

The decoration is justified because by [5, Proposition 7.8.19] we have that Ngen
Z(u),w depends only

on Z(u) up to ∼IEw . The content of our discussion is contained in the following proposition.

Proposition 5.9. If x ∈ X such that for all z ∈ Z we have Nz,w ≺IEw Nx,w then

ρ̃x
∣∣
IEw
∼= ρx

∣∣
IEw
⊗L(x) O

rig
X,x.

Proof. This is given as [5, Corollary 7.5.10] but we include the steps leading to the corollary
(with reference) for the convenience of the reader. The first step is that for each irreducible
component Z(x) passing through x, there exists a point z ∈ Z such that Ngen

Z(x) ∼IEw Nz. Indeed,
in general we have that Nu ≺IEw Ngen

Z(u) for any u ([5, Proposition 7.8.19(iii)]) with equality for a
Zariski open and dense set of points on a fixed component Z(u) (by [5, Proposition 7.8.19(ii)]).
Taking u = x and using that Z is Zariski dense we get the first claim.

It suffices, by [5, Proposition 7.8.9], to show that for each irreducible component Z(x) we have
that Ngen

Z(x) ∼IEw Nx. However, the assumption that Nz,w ≺IEw Nx,w for all z ∈ Z implies that
Ngen
Z(x) ≺IEw Nx by the first claim. As we already mentioned, though, we have Nx ≺IEw Ngen

Z(x) and
thus we get our claim. �

7If r : WEw → GLn(B) (for any ring B) is any representation then we say that r admits a Weil-Deligne
representation if there exists a nilpotent operator N ∈Md(B) such that

r(g) = exp(tw(g)N)

for all g in an open subgroup of IEw . Here tw : IEw → Qp is any continuous group homomorphism and exp is
the usual exponential, well-defined as N is nilpotent and commutes with tw(IEw ). If r admits the structure of a
Weil-Deligne representation then the choice of tw is irrelevant and N is unique.
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5.3. The local geometry of eigenvarieties via deformations of Galois representations

We are now ready to study the local geometry of an eigenvariety via the the deformation
theory of Galois representations. Below we describe two representable deformation problems8

XPUNK ⊂ XPK of Galois representations. We show that the completed local ring of any idem-
potent eigenvariety at a classical point is naturally a quotient the universal deformation ring for
XPK and if we further restrict our eigenvariety (to what we call monodromic) we will see the local
ring as a quotient of the smaller problem XPUNK. Under some extra hypotheses we also deduce
smoothness results of eigenvarieties at classical points.

Throughout this section we will fix an automorphic representation π such that:
(a) π∞ has regular weight,
(b) the representation ρπ : GE,S → GLn(Qp) defined in Proposition 5.2 is irreducible (take the

same set S as there), and
(c) πp is unramified and thus ρπ is crystalline at places v | p.

Fix the place v | p. We assume as well
(d) for w ∈ S such that w is non-split in E, the nilpotent monodromy operator Nw(ρπ) is zero,
(e) we have chosen an accessible refinement χ of the smooth representation πv of GLn(Qp)

deduced from the isomorphism G(Qp) ∼=v GLn(Qp), and
(f) the representation ρπ

∣∣
GEv

is ϕ-regular with respect to the refinement χ (see the definition on

page 74): this corresponds to the condition that if χ = χ1 · · ·χn then χi(p)χj(p)−1 /∈ {1, p}
for all i < j as well as asking that for all i the number χ1(p) · · ·χi(p) appears once in the
list {χj1(p) · · ·χja(p) : j1 < j2 < · · · < ja} (see the discussion at the end of §5.1.6).

Then, given the data of just (a) and (e) we have, for any idempotent e such that e(πp) 6= 0 an
eigenvariety X of type e. We fix X now, but remember that implicit is the choice of the idempotent.
The pair (π, χ) of the representation together with its refinement defines a point z ∈ X(Qp).

5.3.1. The deformation problems. First, we begin with the formal deformation functor
Xρz : ARL(z) → Set given by

Xρz(A) := {deformations ρA of ρz to A}/∼ .

Since we have assumed that ρz is absolutely irreducible, Xρz is representable by a complete local
noetherian ring Runiv

ρz . We denote by ρuniv
z the universal representation.

Let Dz = Drig(ρz,v) be the (ϕ,Γ)-module corresponding to the p-adic representation ρz,v :=
ρz
∣∣
GEv

: GQp → GLn(L(z)). Recall that the formal deformation functors XDz and Xρz,v are
canonically isomorphic by Lemma 3.2. The choice of the refinement χ at the point z defines a
triangulation Pz of Dz. Indeed, the refinement defines an ordering of the crystalline eigenvalues by
§5.1.6, which in turn determines a unique triangulation of Dz because z is ϕ-regular. Recall that
in §3.2.4 we defined a subfunctor X

par,∧
ρz,v ,Pz

⊂ Xρz,v which parameterized deformations which were

- paraboline with respect to the maximal non-critical parabolization P nc
z of Pz, and

- of Kisin-type on each associated graded of P nc
z .

Since we have assumed that ρz,v is ϕ-regular we know by Lemma 3.37 that Xpar,∧
ρz,v ,Pz

is relatively
representable. With this in mind we define

XPK
ρz := Xρz ×Xρz,v X

par,∧
ρz,v ,Pz

.

8For the reader who is interested: the superscript PK refers to Paraboline and Kisin-type and PUNK refers to
“Paraboline, Unitary, moNodromy and Kisin-type. Actually, the last bit is a lie—the N is just the typical symbol
for mondoromy and PUMK isn’t a word.
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By the relative representability of X
par,∧
ρz,v ,Pz

→ Xρz ,v and Proposition 3.1 we have that XPK
ρz is repre-

sentable by a quotient RPK
ρz of Runiv

ρz . Denote the universal deformation by ρPK
z . Though this only

takes into account the deformation theory at the place v, it already cuts out quite and interesting
ring.

Proposition 5.10. There is a natural surjection RPK
ρz � Ô

rig
X,z.

Proof. By Lemma 5.5 we can lift the representation ρz to a representation ρ : GE,S →
GLn(Γ(U,O)) over an affinoid neighborhood U of z. Furthermore, Lemma 5.6 implies that the
(ϕ,Γ)-module D := Drig(ρ

∣∣
GEv

) forms a refined family of (ϕ,Γ)-modules over U . We freely use the
notation (e.g. the δj and Fi) of that lemma as well defining, for a < b, the character

∆a,b := δa · · · δb.

Since we assume that ρz,v is ϕ-regular we know, by Theorem 4.13, that after shrinking U we can
assume that D has a parabolization P deforming the maximal non-critical paraboliztion P nc

z . To
fix notation, we let

P : 0 = Pi0 ( Pi1 ( · · · ( Pis = D.

Denote as well Grk P = Pik/Pik−1
. This is also a refined family of (ϕ,Γ)-modules with respect to the

same set of classical points (or at least that many) and the characters δik−1+1, . . . , δik . Moreover,
the point z is still ϕ-regular with respect to this family. Thus, after shrinking U even more, we can
assume, by Lemma 4.16, that the cohomology groups H0

(
(∧j Grk P

)
(∆−1

ik−1+1,j)) (for any possible
k and j) are free of rank one and satisfy base change. Over U then we have embeddings

RX(unr(Fik−1
· · ·Fj)) ↪→

(
∧j Grk P

)
(∆ik−1+1,j

∣∣−1

Γ
).

Notice that since the quotient is projective over the non-critical locus, the base change of this map
is injective at any point.

Now suppose that I is a co-finite length ideal inside Orig
X,z. From what we have said above, it

follows that:

- D/ID is a paraboline deformation of Dz with respect to P nc
z over A/I, and

- Dcris(∧j Grk P/IP (∆ik−1+1,j

∣∣
Γ
)−1)ϕ=Fik−1+1···Fj is free of rank one (by ϕ-regularity) over A/I for

each j = 1, . . . , rank Grk P and for each k = 1, . . . , s.

Thus D/ID defines a point in X
par,∧
ρz,v ,Pz

(Orig
X,z/I) for each I. By definition this implies that ρ ⊗X

Orig
X,z/I defines a point of XPK

ρz (Orig
X,z/I). Taking I ranging over all possibilities we deduce that there

is a unique morphism ϑ : RPK
ρz → Ô

rig
X,z such that ϑ ◦ ρPK

z = ρ⊗X Ôrig
X,z.

The argument that the map is surjective is standard, but we include it for convenience. Since
RPK
ρz is compact, it suffices by Proposition 5.3 to show Ôrig

W,ω(z)[ψ(H)] is contained in ϑ(RPK
ρz ). The

weight space W is a disjoint union of polydiscs and we have explicit coordinates

Ôrig
W,ω(z)

∼= Qp[[logp ω1, . . . , logp ωn]].

Then, if κPK
1 , . . . , κPK

n ∈ RPK
ρz are the Hodge-Tate-Sen weights of ρPK

z we have, by Lemma 5.6, that
ϑ(κPK

i ) = logp ωi + 1 − i. Thus, Ôrig
W,ω(z) ⊂ ϑ(RPK

ρz ). For the Hecke part of Ôrig
X,z we are charged

with

(a) showing that for w ∈ S0 such that π` is unramified, the elements ψ(xi,w) are in the image
of ϑ, and

(b) ϑ(RPK
ρπ ) also contains the elements ψ(ui,v) = Fi (for i = 0, 1, . . . , n− 1).
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If w ∈ S0 and π` is unramified, then (5.12) shows that all the elements of (a) are in the image of
ϑ, arising as taking ϑ of the characteristic polynomial of ρPK

z (Frobw) (which has RPK
ρz -coefficients).

We finally have, by definition, that there are elements FPK
1 , . . . , FPK

n in RPK
ρz such that for any

co-finite length ideal J ⊂ RPK
ρz

D+
cris

(
∧i
(
ρPK
z

∣∣
GEv

/J
)

(κPK
1 + · · ·κPK

i )
)ϕ=FPK

1 ···FPK
i

is free of rank one over RPK
ρπ /J . Taking i = 1, 2, . . . , n we have that ϑ(FPK

i ) = Fi. �

We continue now to further impose deformation conditions at places w ∈ S with w - p. To that
end, we consider a place w ∈ S with w - p. We then have the subfunctor Xρz,w,f ⊂ Xρz,w defined
by the unramified Bloch-Kato condition. Specifically, ρA ∈ Xρz,w,f (A) if and only if ρA

∣∣
IEw
∼=

ρz
∣∣
IEw
⊗L(z) A. It is easy to check that the conditions of Proposition 3.4 are satisfied and thus

Xρz ,w,f is a relatively representable subfunctor of Xρz ,w. Its tangent space is the well-known local
unramified Bloch-Kato Selmer group

tρz,w,f = H1
f (GEw , ad ρz,w)

which parameterizes extensions V of the trivial representation by ad ρz,w such that the sequence

0→ (ad ρz,w)IEw → V IEw → L(z)→ 0

is still exact. We can package this together with the crystalline deformation functors at places
diving p and obtain a relatively representable subfunctor Xρz ,f ⊂ Xρz . Its Zariski tangent space
tρz ,f is the global Bloch-Kato Selmer group

(5.14) tρz,f = H1
f (GE,S , ad ρz) = ker

(
H1(GE,S , ad ρz)→

∏
w∈S

H1(GEw , ad ρz)/H1
f (GEw , ad ρz)

)
.

Continuing on, we also have a subfunctor XU
ρz ⊂ Xρz given on points by:

XU
ρz(A) =

{
ρA ∈ Xρz(A) : ρ⊥A ∼= ρA(n− 1)

}
.

As before, the criterion Proposition 3.4 makes it clear that this is relatively representable. We now
define a deformation problem XPUNK

ρz ⊂ Xρz by the fibered product

(5.15) XPUNK
ρz

��

// Xρz

��

XU
ρz × X

par,∧
ρz,v ,Pz

×
∏
w∈Sp Xρz,w,f

// Xρz × Xρz,v ×
∏
w∈Sp Xρz,w .

Here, Sp denotes the set of places w ∈ S such that w - p. The bottom arrow is the natural inclusion
into each coordinate. By what we just explained the subfunctor XPUNK

ρz is relatively representable.
We have the following upper bound on the deformation space cut out by XPUNK

ρz . It relates a
deformation space of a global Galois representation to the local deformation space.

Lemma 5.11. The deformation functor Xρz ,f is a subfunctor of XPUNK
ρz and we have an inclusion

tPUNK
ρz /tρz ,f ↪→ t

par,∧
ρz,v ,Pz

/tρz,v ,f .

Proof. Every deformation in tPUNK
ρz is unramified in the sense of Bloch-Kato away from p.

Notice that we have not explicitly specified a deformation condition at the place vc. However, if
ρA is a deformation in XU

ρz then ρ∨A,vc
∼= ρA,v(n− 1) and any deformation condition at v implicitly
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defines a deformation condition at vc. In particular, a deformation ρA ∈ XU
ρz is crystalline at v if

and only if it is crystalline at vc. The result then follows. �

5.3.2. Towards an R = T result. The question remains whether or not Ôrig
X,z is naturally9

cut out by a deformation problem. Notice that the ring RPUNK
ρz is naturally a quotient of RPK

ρz but
that it is not necessary that the map RPK

ρz → Ô
rig
X,z factor through this quotient. In order to make

it so we restrict our eigenvariety slightly.
Recall that the definition of X depended on the choice of an idempotent e ∈ Cc(G(Ap

f ),Q). The
choice of our point z and the representation π at the start of §5.3 remains in force. In particular
notice the hypothesis on the monodromy operator of ρz at places w ∈ S which are non-split in E.

Definition. A monodromic eigenvariety X for z is one which arises from an idempotent e
such that if e(π′) 6= 0 then Nw(ρπ′) ≺IEw Nw(ρz) for all w.

We should note that monodromic eigenvarieties exist (see the “minimal eigenvarieties” explained
in [5, Example 7.5.1]). In fact, one should perhaps state everything in automorphic terms but as
our study is Galois-theoretic in nature we prefer to state it this way. One of the difficulties that
arise when stating it in terms of automorphic representations is that the notion of monodromy at
places w ∈ S diving a place ` where π` is ramified and ` is non-split is unclear. In their original work
[5], Belläıche and Chenevier dealt with this by studying/defining the notion of non-monodromic
principal series representations (see §6.6 of loc. cit.). Such representations fall under our assumption
on Nw(ρz) at such places.

On the other hand, at places w ∈ S where w lies above a split prime then the local Langlands
correspondence provides us, for each π′ with a Weil-Deligne representation (rw(π′), Nw(π′)). The
relation we have is that rw(π′) = rw(ρπ′) and thatNw(ρπ′) = Nw(π′). In particular, if e actually cuts
out all the π′ such that Nw(π′) ≺IEw Nw(π) for split w (which is what the minimal eigenvarieties
do) then e defines a monodromic eigenvariety. In any case, we now fix a monodromic eigenvariety
X for the point z. The upshot of controlling the monodromy action is we can prove the following
result.

Theorem 5.12. Suppose that X is a monodromic eigenvariety for π. Then, the natural map
RPK
ρz → Ô

rig
X,z factors through the quotient RPUNK

ρz .

Proof. Recall that we denote by ρ̂z the deformation of ρz to the completed local ring Ôrig
X,z.

We’ve already shown that this defines a point of RPK
ρz and so we need to show that ρ̂z satisfies

the other conditions in the definition (5.15) of XPUNK
ρz . However, the conjugate self-dual condition

follows from our discussion proceeding Proposition 5.4. The fact that ρ̂z is constant on inertia at
places w ∈ Sp follows from Proposition 5.9. �

We immediately use this result to obtain an upper bound on the Zariski tangent space of X at
the point z.

Corollary 5.13. Assume that H1
f (GE,S , ad ρz) = (0). Then,

dim tX,z ≤ dim t
par,∧
ρz,v ,Pz

/tρz,v ,f .

Proof. The surjection RPUNK
ρz � Ôrig

X,z defines an inclusion tX,z ↪→ tPUNK
ρz . The result then

follows by Lemma 5.11, noting the hypothesis. �

9It is evidently cut out by some subfunctor, the question is whether or not we can describe it
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Recall that in Chapter 3, we considered a hypothesis (3.15) on upper bounds for certain Kisin-
type deformation functors. In particular, we can consider (3.15) for associated gradeds of P nc

z , each
of which is equipped with a fully critical triangulation.

Theorem 5.14. Assume that the each associated graded of P nc
z satisfies the hypothesis (3.15)

of Chapter 3. Then, the natural map RPUNK
ρz → Ôrig

X,z is an isomorphism.

Proof. We know in general that dim tX,z ≥ n because X is equidimensional of dimension n by
Proposition 5.3. On the other hand, by Theorem 3.38 we know that dim t

par,∧
ρz,v ,Pz

/tρz,v ,f ≤ n. The
hypothesis there is valid because of our assumption on Pz. Thus, the previous corollary implies
that we have

n ≤ dim tX,z ≤ dim t
par,∧
ρz,v ,Pz

/tρz,v ,f ≤ n,
forcing equality throughout. In particular, we also have that dim tPUNK

ρz = n (being squeezed in the
middle). General principles (in the deformation theory) then imply that

(5.16) RPUNK
ρz

∼= L(z)[[h1, . . . , hn]]/I � Ôrig
X,z

for some ideal I ⊂ L(z)[[h1, . . . , hn]]. However, since dim Ôrig
X,z = n we see that I = (0) and the map

(5.16) must be an isomorphism. �

We give one example of a smoothness result that can be applied in a vacuum.

Corollary 5.15. Suppose that n ≤ 3. Suppose as well that ρz,v is indecomposable and
H1
f (GE,S , ad ρz) = (0). Then, any monodromic eigenvariety X containing z is smooth at z.

Proof. This follows from Theorem 5.14 and Proposition 3.40. �

We end now with some general remarks.

Remark. Note that the condition that ρz,v be indecomposable in Corollary 5.15 is independent
of the triangulation Pz at the point z = (π, Pz). In particular, for a fixed π it can be applied to
any refined point z = (π, Pz).

Remark. The hypothesis that H1
f (GE,S , ad ρz) = (0) in each of the above corollaries should be

seen as a technical one. Note that the hypothesis can be checked after making a finite base change
E′/E since ad ρz is a characteristic zero representation. The hypothesis can then be deduced in any
situation where we have available a potential automorphy theorem and the corresponding R = T
result. We note as well that it is conjectured to always be true, and known in almost every case if
dim ρz ≤ 2. The reader should see [5, Chapter 5] for a general discussion.

Remark. Consider Corollary 5.15 again. By [16, Theorem 4.8] one knows that if z is a non-
critical point then the weight map ω : X →W is étale at the point z. Furthermore, the arguments
of [7] can be adapted to the situation of Corollary 5.15 to show that ω is étale at z if and only if
z is non-critical. These arguments, unfortunately, did not make it into this thesis, but they will
appear in future work.

Remark. A previous study by Belläıche [2] of critical points on an eigenvariety for U(3) ac-
tually produced non-smooth points, contrary to Corollary 5.15. Those points, however, all arose
in situations where the global representation ρz was decomposable. It still seems unclear what the
precise role the irreducibility of ρz plays in smoothness results. The author offers no conjecture.
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[5] J. Belläıche and G. Chenevier. Families of Galois representations and Selmer groups. Astérisque, (324):xii+314,
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[25] M. Eichler. Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion.

Arch. Math., 5:355–366, 1954.
[26] M. Emerton. On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms. Invent.

Math., 164(1):1–84, 2006.
[27] J.-M. Fontaine. Représentations p-adiques des corps locaux. I. In The Grothendieck Festschrift, Vol. II, volume 87

of Progr. Math., pages 249–309. Birkhäuser Boston, Boston, MA, 1990.
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[31] F. Gouvêa and B. Mazur. Families of modular eigenforms. Math. Comp., 58(198):793–805, 1992.
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