Last updated: July 25, 2024

John Bergdall

Department of Mathematical Sciences University of Arkansas Fayetteville, AR 72701 Email: bergdall@uark.edu Web: https://bergdalljf.github.io Office: SCEN 220

Employment

2022–	The University of Arkansas, Assistant Professor.
2018–22	Bryn Mawr College, Assistant Professor.
2017–18	Michigan State University, Visiting Assistant Professor.
2014–17	Boston University, NSF Postdoctoral Research Fellow.
2013–14	Boston University, Postdoctoral Faculty Fellow.

Education

2008–13	Brandeis University, Ph.D.	
	On the variation of (φ, Γ) -modules over <i>p</i> -adic families of automorphic forms.	
	Advisor: Joël Bellaïche	
2003–08	University of Minnesota, B.S.	

Other academic positions

2021–22	Max-Planck-Institut für Mathematik Visiting researcher (1 year).	
2017	Max-Planck-Institut für Mathematik Visiting researcher (3 months).	
	Institut des Hautes Études Scientifiques	
	Visiting researcher (2 months).	

National grants and fellowships

2024	National Science Foundation (Award No. DMS-2401152) Project: "Conference: Modular forms, <i>L</i> -functions, and eigenvarieties"	
2023–	National Science Foundation (Award No. DMS-2302284) Project: "Slopes of modular forms and moduli stacks of Galois representations"	
2020–	Simons Foundation Collaboration Grant for Mathematicians (Award No. 713782) Project: "Eigenvarieties, automorphic forms, and Galois representations".	
2014–17	National Science Foundation Mathematical Sciences Postdoctoral Research Fel- lowship (Award No. DMS-1402005) Project: "Aspects of the Langlands program via <i>p</i> -adic families of automorphic forms".	

University awards and fellowships

2023–24	University of Arkansas Robert C. and Sandra Connor Endowed Faculty Fellowship
2022-23	University of Arkansas New Faculty Commendation for Teaching Commitment

- A *p*-adic adjoint *L*-function and the ramification locus of Hilbert modular eigenvarieties (with Baskar Balasubramanyam and Matteo Longo) To appear in *Tunisian J. Math.*
- 14. Huber rings and valuation spectra To appear in *Münster Lectures in Mathematics*.
- On *p*-adic *L*-functions for Hilbert modular forms (with David Hansen) Mem. of the Amer. Math. Soc., 298 (2024), no. 1489, pp. iv+126. DOI:10.1090/memo/1489
- Reductions of 2-dimensional semi-stable representations with large *L*-invariant (with Brandon Levin and Tong Liu)
 J. Inst. Math. Jussieu, 22 (2023), no. 6, p. 2619–2644. DOI:10.1017/S1474748022000081
- Slopes of modular forms and reducible Galois representations, an oversight in the ghost conjecture (with Robert Pollack) Proc. Amer. Math. Soc. Ser. B, 9 (2022), 432–444. DOI:10.1090/bproc/136.
- Reductions of some two-dimensional crystalline representations via Kisin modules (with Brandon Levin) Int. Math. Res. Not. (2022), no. 4, 3170—3197. DOI:10.1093/imrn/rnaa240.
- 9. Smoothness of definite unitary eigenvarieties at critical points J. reine angew. Math. (Crelle's J.), 759 (2020), 29–60. DOI:10.1515/crelle-2017-0048.
- Upper bounds for constant slope *p*-adic families of modular forms Selecta Math., 25 (2019), no. 4, Art. 59, pp. 24. DOI:10.1007/s00029-019-0505-8.
- 7. Slopes of modular forms and the ghost conjecture, II (with Robert Pollack) *Trans. Amer. Math. Soc.*, 372 (2019), no. 1, 357–388. DOI:10.1090/tran/7549.
- 6. Slopes of modular forms and the ghost conjecture (with Robert Pollack) Int. Math. Res. Not. (2019), no. 4, 1125–1144. DOI:10.1093/imrn/rnx141.
- 5. An adjunction formula for the Emerton–Jacquet functor (with Przemyslaw Chojecki) *Israel J. Math.* 223 (2018), no. 1, 1–52. DOI:10.1007/s11856-017-1611-y.
- A remark on non-integral *p*-adic slopes for modular forms (with Robert Pollack)
 C. R. Math. Acad. Sci. Paris 355 (2017), no. 3, 260–262. DOI:10.1016/j.crma.2017.01.012.
- 3. Paraboline variation of *p*-adic families of (φ, Γ) -modules Compositio Math. 153 (2017), no. 1, 132–174. DOI:10.1112/S0010437X16007831.
- 2. Arithmetic properties of Fredholm series for *p*-adic modular forms (with Robert Pollack) *Proc. Lon. Math. Soc.*, (3) 113 (2016), no. 4, 419–444. DOI:10.1112/plms/pdw031.
- 1. Ordinary modular forms and companion points on the eigencurve *J. Number Theory* 134 (2014), 226–239. DOI:10.1016/j.jnt.2013.07.014.

1. New phenomena arising from \mathcal{L} -invariant of modular forms (with Robert Pollack)

Computational research code

2023–	Github repository: \mathcal{L} -invariants of modular forms (joint with Robert Pollack)
2021–	Github repository: Slopes of modular forms (joint with Robert Pollack)
2017	Website: Slopes of modular forms and Fredholm series (joint with Robert Pollack)

Invited lecture series

2023	Spring school on non-Archimedean geometry and eigenvarieties (Heidelberg, DE)
	Four graduate-level lectures on adic spaces.
2022	Graduate school on <i>p</i> -adic <i>L</i> -functions and eigenvarieties (South Bend, IN)
	Four graduate-level lectures on Galois representations and eigenvarieties.

Conference and workshop presentations

2023	TORA XII: Tex.–Okla. Representations and Automorphic Forms (Norman, OK) " <i>p</i> -adic distributions of modular forms".
2022	PCMI: Number theory informed by computation (Park City, UT) " <i>p</i> -adic distributions of modular forms".
	<i>p</i> -adic <i>L</i> -functions and eigenvarieties (South Bend, IN) " <i>p</i> -adic distributions of modular forms".
2020	AMS special session on automorphic forms and Galois representations (Virtual) "Reductions of local Galois representations for eigenforms with large \mathcal{L} -invariants".
2019	Moduli spaces and modularity (Oaxaca, MX) "Explicit &-modules for crystalline representations".
	AMS special session on special values of <i>L</i> -functions and arithmetic invariants in families (Hartford, CT) "Constant slope families of <i>p</i> -adic modular forms".
	33rd Automorphic Forms Workshop (Pittsburgh, PA) "Constant slope families of <i>p</i> -adic modular forms"
2017	AMS special session on <i>p</i> - aspects of arithmetic geometry (Buffalo, NY) "Upper bounds for constant slope <i>p</i> -adic families of modular forms".
	<i>p</i> -adic methods for Galois representations and modular forms (Barcelona, ES) "Geometric properties of <i>p</i> -adic families of automorphic forms (and applications)".
2016	AMS special session on <i>p</i> -adic analysis in number theory (Minneapolis, MN) "Some questions about slopes of modular forms". Connecticut summer school in number theory (Storrs, CT)
	"Geometric properties of <i>p</i> -adic families of automorphic forms and applications".
	The <i>p</i> -adic Langlands program and related topics (Bloomington, IN) "Slopes of modular forms and the ghost series".

Conference and workshop presentations, cont.

2015	Boston University/Keio University joint workshop in number theory (Boston "Slopes of modular forms and the ghost conjecture".	
	<i>p</i> -adic methods in the theory of classical automorphic forms (Montréal, CA) "Arithmetic properties of Fredholm series".	
2014	Fourth annual upstate New York number theory conference (Buffalo, NY) "Ordinary representations on $U(3)$ and a conjecture of Breuil and Herzig".	
2013	Modular forms, <i>p</i> -adic <i>L</i> -functions and Selmer groups (Oriahovitza, BG) "Parabolizations over families of trianguline representations".	

Conference and workshop organization

2024	Co-organizer : Modular forms, <i>L</i> -functions, and eigenvarieties (Paris, France)
2015	Co-organizer : Boston University/Keio University workshop 2015 (Boston, MA)

Recent colloquia & seminar presentations († indicates colloquium or other special presentation)

2024	Oklahoma University Oklahoma University [†]	"Slopes and $\mathcal L$ -invariants" "Some distributions arising in algebra and number theory"
2023	Rice University University of Arkansas University of Pittsburgh [†] University of Arkansas	"p-adic slope distributions of modular forms" — — "Huber rings and valuation theory" (3 lectures)
2022	Université de Lille Univ. du Luxembourg Max Planck Inst. Universität Heidelberg Indian Inst. Sci. (IISc) Université Laval	"Recent investigations of <i>L</i> -invariants of modular forms." — — — — —
2021	Max Planck Inst. [†] Boston Univ	"Problems in the non-Archimedean theory of modular forms" "Reductions of certain semi-stable Galois representations"
2020	University of Oregon	"Reductions of some crystalline representations"
2019	Boston University US Naval Academy Univ. of Notre Dame [†] Inst. for Adv. Study	— "Explicit problems in the <i>p</i> -adic theory of modular forms" — "Upper bounds for constant slope <i>p</i> -adic families"
2018	Harvard Univ. Univ. of Pennsylvania Univ. of Arizona Haverford College [†] Purdue Univ.	"Upper bounds for constant slope <i>p</i> -adic families" — "Approximating roots: from Newton to the ghost conjecture" "Upper bounds for constant slope <i>p</i> -adic families"

Recent colloquia & seminar presentations, cont.

2017	Univ. of Michigan Michigan State Univ. Max Planck Inst.	"Critical <i>p</i> -adic <i>L</i> -functions for Hilbert modular forms" "Introduction to the arithmetic of modular forms" (3 lectures) "Slopes of modular forms and the ghost conjecture"
	Max Planck Inst. [†]	"p-adic variation of Hecke eigenforms"
	Univ. Paris-Sud	"On p-adic L-functions for Hilbert modular forms"
	IHÉS	—
2016	Boston Univ.	"On <i>p</i> -adic <i>L</i> -functions for finite slope modular forms"
	UC-Santa Cruz	"Slopes of modular forms and the ghost conjecture"
	Harvard Univ.	—
	Univ. of Connecticut	—
	Indiana Univ.	—
	Boston University †	"Aspects of the Langlands program in families of modular forms"
2015	Univ. of Chicago	"Arithmetic properties of Fredholm series"
	Northwestern Univ.	—
	Boston University	"On the mod p reduction of Fredholm determinants"
	Oxford Univ.	—
2014	MIT	"Smoothness in families of p -adic automorphic forms"
	Amherst Coll.	"Representations in the cohomology of definite unitary groups"
	Brandeis Univ.	

Colloquiua and seminars organized

2022–23	Organizer : University of Arkansas graduate student learning seminars <i>Topics</i> : Algebraic number theory
2019–20	Co-organizer: Bi-College math colloquium
2019–20	Co-organizer: Philadelphia area number theory seminar
2013–17	Co-organizer: Boston University number theory seminar
2014–15	Organizer : Boston University graduate student learning seminars <i>Topics</i> : The local Langlands conjectures, <i>p</i> -adic Hodge theory.
, ·	

Teaching

2022– (UArk)	MATH 619V: Topics in algebra — elliptic curves MATH 3-4113: Introduction to Abstract Algebra I, II MATH 3203: Number Theory
2018–20 (BMC)	 MATH B102: Calculus II MATH B290: Elementary number theory MATH B303-4: Algebra I, II MATH B317: Topics in advanced mathematics: elliptic curves MATH B398: Senior conference: mathematics and democracy MATH B399: Senior conference: mathematical cryptography MATH B503-4: Graduate algebra I, II
2017–18 (MSU)	MTH 132-3: Calculus I, II

2013–17 (BU)	MA 841: Topics in number theory MA 123: Calculus I
(20)	MA 341: Elementary Number Theory MA 541: Abstract algebra
2015	PROMYS , Instructor Complex analysis in number theory (high school students)

Degree bearing student advising and research

2020–21	Sandy Chen (AB, Bryn Mawr College '21) Thesis: The distribution of greatest common divisor of $\mathbf{Z}[\sqrt{2}]$.
2019–21	Elsa Magness (MA, Bryn Mawr College '21)
	Thesis: An Exposition of the Sato–Tate Conjecture for Elliptic Curves with Complex Multiplication.
2019–20	Sophia Schein (AB/MA, Bryn Mawr College '20)
	Thesis: Hecke operators on linear representations over finite fields.
2015–16	Alexander Peraire-Bueno (Boston University Academy thesis) Thesis: <i>Counting with partitions</i> .

Other student research, mentorship, and service

2019	Summer Science Research (Bryn Mawr College) Students: Sandy Chen and Sophia Schein.
	PROMYS research project writer Students: Eric Tang, Aryaman Srikant, Emily Huang, and Aidan Griffin. Title: <i>Representation theory and Dickson's theorem</i> .
2016	PROMYS research project mentor Students: David Amirault, Vanshika Jain, Roshan Padaki, and Sabir Shaik. Title: <i>Slopes of Newton polygons</i> .

Professional development

2024	Inspiring Inquiry and Preparing Lifelong Learners (Certificate provided by the Association of College and University Educators (ACUE))
2020	Teaching and Learning Institute partnership
	Partners: Sara Grossman, Kirtee Ramo, Yeipyeng Kwa.
	Online Teaching Institute (Bryn Mawr College)
2019	Cornell Interactive Theater Ensemble workshop
	Theme: "Hang in There and Be Tough".
	Posse Plus Retreat
	Theme: "The State of our Union".
2018-19	Teaching and Learning Institute partnership Partner: Jake Ogata Bernstein.

College and university service

2023–	Ad-hoc graduate qualifying exam committee (Univ. Ark. Math.)
	Curriculum committee (Univ. Ark. Math.)
2020	Graduate Council (Bryn Mawr Coll.)
	Director of Graduate Studies in Mathematics (Bryn Mawr Coll., Math.)
2019–20	Committee on Undergraduate Awards and Fellowships (Bryn Mawr Coll.)

Non-college professional service

2016–	Peer reviewer Journals (13 total): Algebra and Number Theory, American J. Math., Duke. Math. J., Inventiones Math., J. Algebra, J. Num. ThyBordeaux, Manuscripta Math., Math. Annalen, Proc. American Math. Society, Proc. London Math. Society, Ramanujan Jour., Research in Math. Sci., Research in Num. Theory.
2023	TORA XII Graduate Student Q & A session
	Facilitated question and answer session for graduate student conference participants.
2020	Panel: Cross Atlantic representation theory and other topics online
	Topic: "How individuals are dealing with the pandemic".
2019	Panel: Philadelphia Undergraduate Mathematics Conference
	Topic: Professional development.
2016	Panel: Boston College mathematics graduate student association Topic: Professional development.

Professional membership

2020-	Mathematical Association of America
2008–	American Mathematical Society (gap 2014-15)